-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME
90 lines (50 loc) · 1.85 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
SUNNY-AS
========
SUNNY for Algorithm Selection
sunny-as tool implements the SUNNY algorithm [1] for a given ASlib [2] scenario.
*** Beta version ***
REQUIREMENTS
============
+ Python v2.x
https://www.python.org/
+ Java (for feature selection)
https://www.java.com
Note that currently this tool is tested only on Ubuntu 64-bit machines.
INSTRUCTIONS
============
The sources of sunny-as are all contained in the "src" folder.
For training a given scenario, use:
train_scenario [OPTIONS] <SCENARIO_PATH>
while for testing the SUNNY performance use:
test_scenario [OPTIONS] <SCENARIO_PATH>
If you want to first split the training/test sets according to the cross-fold
validation indicated in the scenario (see file cv.arff) use instead:
split_scenario [OPTIONS] <SCENARIO_PATH>
After the training, it is also possible to define a pre-solving phase with:
pre_process [OPTIONS] <SCENARIO_PATH>
Note that for performing feature selection the file weka.jar is used.
EXAMPLE
=======
This is just an example on QBF-2011 scenario.
1. TRAIN
sunny-as:$~ python src/train_scenario.py data/aslib_1.0.1/QBF-2011
2. PRESOLVING [optional]
sunny-as:$~ python src/pre_process.py --kb-path data/aslib_1.0.1/QBF-2011/kb_QBF-2011
-E "weka.attributeSelection.InfoGainAttributeEval" -S "weka.attributeSelection.Ranker -N 5"
--static-schedule --filter-portfolio data/aslib_1.0.1/QBF-2011
3. TEST
sunny-as:$~ python src/test_scenario.py -K data/aslib_1.0.1/QBF-2011/kb_QBF-2011 data/aslib_1.0.1/QBF-2011
AUTHOR
======
Roberto Amadini (amadini at cs.unibo.it)
CONTRIBUTORS
============
Fabio Biselli
Tong Liu
Jacopo Mauro
REFERENCES
==========
[1] R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a Lazy Portfolio Approach
for Constraint Solving 2013. In ICLP, 2014.
[2] Algorithm Selection Library (ASlib)
http://www.coseal.net/aslib/