-
Notifications
You must be signed in to change notification settings - Fork 0
CP-Unibo/sunny-as
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
SUNNY-AS ======== SUNNY for Algorithm Selection sunny-as tool implements the SUNNY algorithm [1] for a given ASlib [2] scenario. *** Beta version *** REQUIREMENTS ============ + Python v2.x https://www.python.org/ + Java (for feature selection) https://www.java.com Note that currently this tool is tested only on Ubuntu 64-bit machines. INSTRUCTIONS ============ The sources of sunny-as are all contained in the "src" folder. For training a given scenario, use: train_scenario [OPTIONS] <SCENARIO_PATH> while for testing the SUNNY performance use: test_scenario [OPTIONS] <SCENARIO_PATH> If you want to first split the training/test sets according to the cross-fold validation indicated in the scenario (see file cv.arff) use instead: split_scenario [OPTIONS] <SCENARIO_PATH> After the training, it is also possible to define a pre-solving phase with: pre_process [OPTIONS] <SCENARIO_PATH> Note that for performing feature selection the file weka.jar is used. EXAMPLE ======= This is just an example on QBF-2011 scenario. 1. TRAIN sunny-as:$~ python src/train_scenario.py data/aslib_1.0.1/QBF-2011 2. PRESOLVING [optional] sunny-as:$~ python src/pre_process.py --kb-path data/aslib_1.0.1/QBF-2011/kb_QBF-2011 -E "weka.attributeSelection.InfoGainAttributeEval" -S "weka.attributeSelection.Ranker -N 5" --static-schedule --filter-portfolio data/aslib_1.0.1/QBF-2011 3. TEST sunny-as:$~ python src/test_scenario.py -K data/aslib_1.0.1/QBF-2011/kb_QBF-2011 data/aslib_1.0.1/QBF-2011 AUTHOR ====== Roberto Amadini (amadini at cs.unibo.it) CONTRIBUTORS ============ Fabio Biselli Tong Liu Jacopo Mauro REFERENCES ========== [1] R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a Lazy Portfolio Approach for Constraint Solving 2013. In ICLP, 2014. [2] Algorithm Selection Library (ASlib) http://www.coseal.net/aslib/
About
SUNNY for Algorithm Selection
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published