- Convert data to tfrecord
$ DATASET_DIR=your quality dataset path (/home/.../data/mobilenet_blur_20170830)
$ python download_and_convert_data.py \
--dataset_name=quality \
--dataset_dir="${DATASET_DIR}"
- Training
$ TRAIN_DIR=path to save trained model (/home/.../models/trained)
$ DATASET_DIR=your quality dataset path (/home/.../data/mobilenet_blur_20170830)
$ CHECKPOINT_PATH=path to load pre-trained model (/home/.../models/pre-trained/mobilenet_v1_1.0_224.ckpt)
$ python train_image_classifier.py \
--train_dir=${TRAIN_DIR} \
--dataset_dir=${DATASET_DIR} \
--dataset_name=quality \
--dataset_split=train \
--model_name=mobilenet_v1 \
--max_models_to_keep=100 \
--checkpoint_path=${CHECKPOINT_PATH} \
--checkpoint_exclude_scopes=MobilenetV1/Logits
- Evaluation
$ DATASET_DIR=your quality dataset path (/home/.../data/mobilenet_blur_20170830)
$ CHECKPOINT_PATH=path to load trained model (/home/.../models/trained/model.ckpt-10339)
$ python eval_image_classifier.py \
--checkpoint_path=${CHECKPOINT_PATH} \
--dataset_dir=${DATASET_DIR} \
--dataset_name=quality \
--dataset_split_name=test \
--model_name=mobilenet_v1
- Classify
List test files' absolute path into the file
$ ls -d -1 $PWD/*.* > abspath_file.txt
$ INPUT_FILE=file which includes test dataset's filenames (/home/.../data/mobilenet_blur_20170830/test/20170830_test_1.txt)
$ OUTPUT_FILE=predicted result file (/home/.../data/mobilenet_blur_20170830/test/pred_20170830_test_1.txt)
$ CHECKPOINT_PATH=path to load trained model (/home/.../models/trained/model.ckpt-10339)
$ python classify_image.py \
--infile=${INPUT_FILE} \
--outfile=${OUTPUT_FILE} \
--checkpoint_path=${CHECKPOINT_PATH} \
--model_name=mobilenet_v1 \
--preprocessing_name=inception_v3 \
--num_classes=2 \
--eval_image_size=32