forked from kanition/pbrtbook
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
91 additions
and
51 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,56 +1,78 @@ | ||
\section{译者补充:四元组}\label{sec:译者补充:四元组} | ||
\emph{本节内容不是原书内容,而是译者自学补充的,请酌情参考和斧正。} | ||
\section{译者补充:四元数}\label{sec:译者补充:四元数} | ||
\begin{remark} | ||
本节内容不是原书内容,而是译者自学补充的,请酌情参考和斧正。 | ||
\end{remark} | ||
|
||
本节内容主要依据文献\citep{10.5555/90767.90913}整理而成, | ||
给出四元组相关数学推导,具体介绍 | ||
四元组的定义、性质及其在几何变换中的运用。 | ||
本节内容主要依据文献\citep{10.5555/90767.90913,enwiki:1014110231,enwiki:1013104981}整理而成, | ||
给出四元数相关数学推导,具体介绍 | ||
四元数的定义、性质及其在几何变换中的运用。 | ||
|
||
\subsection{四元组的定义}\label{sub:四元组的定义} | ||
\subsection{四元数的定义}\label{sub:四元数的定义} | ||
\begin{definition} | ||
\keyindex{四元组}{quaternion}{}记作 | ||
\keyindex{四元数}{quaternion}{}记作 | ||
\begin{align} | ||
{\bm q}=c+x{\rm i}+y{\rm j}+z{\rm k}\, , | ||
{\bm q}=c+x\mathbf{i}+y\mathbf{j}+z\mathbf{k}\, , | ||
\end{align} | ||
其中$c$,$x$,$y$,$z$是实数,${\rm i}$,${\rm j}$,${\rm k}$是虚数。 | ||
也可简记为 | ||
\begin{align} | ||
{\bm q}=c+{\bm u}\, , | ||
\end{align} | ||
其中${\bm u}=x{\rm i}+y{\rm j}+z{\rm k}$称为四元组的\keyindex{纯部}{pure part}{}, | ||
$c$称为\keyindex{实部}{real part}{}。 | ||
\end{definition} | ||
其中$c,x,y,z$是实数, | ||
$\mathbf{i},\mathbf{j},\mathbf{k}$是\keyindex{基四元数}{basic quaternion}{quaternion四元数}, | ||
也称\keyindex{基元}{basis element}{quaternion四元数}。 | ||
|
||
设$Q$为四元组集合,且在基$\{1,{\rm i},{\rm j},{\rm k}\}$上定义了加法和乘法两种运算。 | ||
这里基满足 | ||
\begin{align} | ||
\left\{ | ||
\begin{aligned} | ||
{\rm i}^2={\rm j}^2={\rm k}^2=-1\, , \\ | ||
{\rm ij}={\rm k},\quad {\rm ji}={\rm -k}\, , \\ | ||
{\rm jk}={\rm i},\quad {\rm kj}={\rm -i}\, , \\ | ||
{\rm ki}={\rm j},\quad {\rm ik}={\rm -j}\, . | ||
\end{aligned} | ||
\right. | ||
\end{align} | ||
四元组加法为 | ||
\begin{align} | ||
{\bm q}+{\bm q}'=(c+c')+(x+x'){\rm i}+(y+y'){\rm j}+(z+z'){\rm k}\, . | ||
\end{align} | ||
乘法展开可得 | ||
\begin{align} | ||
{\bm q}{\bm q}' & =(c+x{\rm i}+y{\rm j}+z{\rm k})(c'+x'{\rm i}+y'{\rm j}+z'{\rm k})\nonumber \\ | ||
& =(cc'-xx'-yy'-zz')+(yz'-y'z+cx'+c'x){\rm i}\nonumber \\ | ||
& \quad+(zx'-z'x+cy'+c'y){\rm j}+(xy'-x'y+cz'+c'z){\rm k}\, . | ||
\end{align} | ||
也可以简记为 | ||
基四元数可视为分别指向三个空间轴向的单位向量。 | ||
此时${\bm q}$可以看作由一个标量和一个向量构成: | ||
其中$c$称为\keyindex{实部}{real part}{}或\keyindex{标量部}{scalar part}{quaternion四元数}, | ||
$x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$称为\keyindex{虚部}{imaginary part}{quaternion四元数}、\keyindex{纯部}{pure part}{quaternion四元数}或\keyindex{向量部}{vector part}{quaternion四元数}。 | ||
\end{definition} | ||
\begin{definition} | ||
当$c=0$且$xyz\neq 0$时,${\bm q}$称为\keyindex{向量四元数}{vector quaternion}{quaternion四元数}。 | ||
\end{definition} | ||
\begin{definition} | ||
当$x=y=z=0$时,${\bm q}$称为\keyindex{标量四元数}{scalar quaternion}{quaternion四元数}。 | ||
其中,当$c=x=y=z=0$时,${\bm q}$称为\keyindex{零四元数}{zero quaternion}{quaternion四元数},记作$0$。 | ||
\end{definition} | ||
\begin{notation} | ||
在实际书写时,我们做如下约定: | ||
\begin{itemize} | ||
\item $c,x,y,z$之一等于$0$时,略写相应项; | ||
\item $x,y,z$之一等于$1$时,相应项简写为$\mathbf{i,j}$或$\mathbf{k}$; | ||
\item 也可写作${\bm q}=c+{\bm u}$,其中$c$为标量,${\bm u}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$为向量; | ||
\item 所有四元数构成的集合记作$\mathbb{H}$。 | ||
\end{itemize} | ||
\end{notation} | ||
\begin{remark} | ||
因为实数域$\mathbb{R}$、向量空间$\mathbb{R}^3$分别 | ||
与$\mathbb{H}$的子集\keyindex{同构}{isomorphic}{}, | ||
所以即便在这种记法下 | ||
实数与标量四元数、三维向量与向量四元数记号一样, | ||
其逻辑也是自洽的。 | ||
\end{remark} | ||
\subsection{四元数的运算}\label{sub:四元数的运算} | ||
分别记四元数为 | ||
\begin{align} | ||
{\bm q}{\bm q}' & =(c+{\bm u})(c'+{\bm u}')\nonumber \\ | ||
& =(cc'-{\bm u}\cdot{\bm u}')+({\bm u}\times{\bm u}'+\langle c{\bm u}'\rangle+\langle c'{\bm u}\rangle)\, , | ||
{\bm q} & =c+{\bm u}=c+x\mathbf{i}+y\mathbf{j}+z\mathbf{k}\, , \\ | ||
{\bm q}_1 & =c_1+{\bm u}_1=c_1+x_1\mathbf{i}+y_1\mathbf{j}+z_1\mathbf{k}\, , \\ | ||
{\bm q}_2 & =c_2+{\bm u}_2=c_2+x_2\mathbf{i}+y_2\mathbf{j}+z_2\mathbf{k}\, , | ||
\end{align} | ||
其中 | ||
\begin{align*} | ||
{\bm u}\cdot{\bm u}' & =xx'+yy'+zz'\, , \\ | ||
\langle c{\bm u}\rangle & =cx{\rm i}+cy{\rm j}+cz{\rm k}\, , \\ | ||
{\bm u}\times{\bm u}' & =(yz'-zy'){\rm i}+(zx'-xz'){\rm j}+(xy'-yx'){\rm k}\, | ||
\end{align*} | ||
分别为\keyindex{内积}{inner product}{}、数乘、\keyindex{叉积}{cross product}{}。 | ||
其中$c,x,y,z,c_1,x_1,y_1,z_1,c_2,x_2,y_2,z_2\in\mathbb{R}$,${\bm u},{\bm u}_1,{\bm u}_2\in\mathbb{R}_3$。 | ||
\begin{definition} | ||
四元数\keyindex{加法}{addition}{}为 | ||
\begin{align} | ||
{\bm q}_1+{\bm q}_2 & =(c_1+c_2)+({\bm u}_1+{\bm u}_2)\nonumber \\ | ||
& =(c_1+c_2)+(x_1+x_2)\mathbf{i}+(y_1+y_2)\mathbf{j}+(z_1+z_2)\mathbf{k}\, . | ||
\end{align} | ||
\end{definition} | ||
\begin{definition} | ||
基元$\mathbf{i},\mathbf{j},\mathbf{k}$的乘法为 | ||
\begin{align} | ||
1\mathbf{i} & =\mathbf{i}1=\mathbf{i}, & 1\mathbf{j} & =\mathbf{j}1=\mathbf{j}, & 1\mathbf{k} & =\mathbf{k}1=\mathbf{k}\, , \\ | ||
\mathbf{i}^2 & =-1, & \mathbf{j}^2 & =-1, & \mathbf{k}^2 & =-1\, , \\ | ||
\mathbf{ij} & =\mathbf{k}, & \mathbf{jk} & =\mathbf{i}, & \mathbf{ki} & =\mathbf{j}\, , \\ | ||
\mathbf{ji} & =-\mathbf{k}, & \mathbf{kj} & =-\mathbf{i}, & \mathbf{ik} & =-\mathbf{j}\, . | ||
\end{align} | ||
\end{definition} | ||
\begin{definition} | ||
对于$\lambda\in\mathbb{R}$,四元数的\keyindex{数乘}{scalar multiplication}{}为 | ||
\begin{align} | ||
\lambda{\bm q} & =\lambda c+\lambda {\bm u}\nonumber \\ | ||
& =\lambda c+(\lambda x)\mathbf{i}+(\lambda y)\mathbf{j}+(\lambda z)\mathbf{k}\, . | ||
\end{align} | ||
\end{definition} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters