This repository is the official PyTorch codes of:
Dessie: Disentanglement for Articulated 3D Horse Shape and Pose Estimation from Images
Ci Li, Yi Yang, Zehang Weng, Elin Hernlund, Silvia Zuffi and Hedvig Kjellström
ACCV 2024
The codes are tested in Python3.7, Pytorch 1.11.0 for Ubuntu 18.0. Below we prepare the python environment using Anaconda.
https://github.com/Celiali/DESSIE.git
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txt
The hSMAL model is available at this link.
Download the hSMAL model and the additional file through this link, and place them under ./code/src/SMAL/smpl_models
folder.
For DessiePIPE or evaluation, please follow the data preparation instructions to prepare the data.
We provide the pretrained model available at this link.
Download and place it under ./results
folder.
|-- results
|-- TOTALRANDOM (only trained on synthetic data) (trained w/o $L_gt$)
|-- version_9: Dessie
|-- version_12: DinoHMR
|-- COMBINAREAL (finetune on MagicPony dataset)
|-- version_8: Dessie*
|-- version_9: DinoHMR*
- Testing
python test.py
- Extract Key
python extract_key.py
-
Evaluation
- Evaluation with kp transfer task
cd code && ./script/kptransfer.sh
- PCK, IOU, AUC Evaluation on Animal Pose and Pascal dataset
cd code && ./script/evaluation2d_staths.sh
- PCK, IOU Evaluation on MagicPony dataset
cd code && ./script/evaluation2d_magicpony.sh
- PCK, PA-MPJPE Evaluation on PFERD dataset
cd code && ./script/evaluation_pferd.sh
- Chamfer distance evaluation on PFERD dataset
cd code && ./script/evaluation_pferd_chamfer.sh
- To compare with MaigcPony or 3DFauna,
cd code/src && python evalpferd_utils/pferd.py
to save images for MagicPony/3D Fauna as input and save all information- run demo of MagicPony or 3DFauna, save
obj, w2c, campos, posed_bones
for all frames - set
SOTA = True, PONY (True for Magicpony, False for 3DFauna)
incode/src/evaluate_chamfer_pferd.py
- To compare with MaigcPony or 3DFauna,
- Evaluation with kp transfer task
-
Training
cd code/script
# Train only with DessiePIPE
sbatch train_dessie_1.sh --> Dessie
sbatch train_dinohmr_1.sh --> DinoHMR
# Finetune with real images
sbatch train_dessie_finetune_magicpony.sh --> Dessie finetune with Magicpony dataset
sbatch train_dessie_finetune_staths.sh --> Dessie finetune with Staths dataset
sbatch train_dinohmr_finetune_magicpony.sh --> DinoHMR finetune with Magicpony dataset
sbatch train_dinohmr_finetune_staths.sh --> DinoHMR finetune with Staths dataset
If you use this code please cite
@inproceedings{li2024dessie,
title={Dessie: Disentanglement for Articulated 3D Horse Shape and Pose Estimation from Images},
author={Li, Ci and Yang, Yi and Weng, Zehang and Hernlund, Elin and Zuffi, Silvia and Kjellstr{\"o}m, Hedvig},
booktitle={Asian Conference on Computer Vision},
year={2024}
}
If you use the PFERD dataset, please cite:
@article{li2024poses,
title={The Poses for Equine Research Dataset (PFERD)},
author={Li, Ci and Mellbin, Ylva and Krogager, Johanna and Polikovsky, Senya and Holmberg, Martin and Ghorbani, Nima and Black, Michael J and Kjellstr{\"o}m, Hedvig and Zuffi, Silvia and Hernlund, Elin},
journal={Scientific Data},
volume={11},
number={1},
pages={497},
year={2024},
publisher={Nature Publishing Group UK London}
}
Some great resources we benefit from: SPIN, avian-mesh, aves, TEXTure, Text2Tex, Staths, lassie, MagicPony, Splice.