Skip to content

Celiali/Dessie

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dessie: Disentanglement for Articulated 3D Horse Shape and Pose Estimation from Images

This repository is the official PyTorch codes of:

Dessie: Disentanglement for Articulated 3D Horse Shape and Pose Estimation from Images
Ci Li, Yi Yang, Zehang Weng, Elin Hernlund, Silvia Zuffi and Hedvig Kjellström

ACCV 2024

front

Installation

The codes are tested in Python3.7, Pytorch 1.11.0 for Ubuntu 18.0. Below we prepare the python environment using Anaconda.

https://github.com/Celiali/DESSIE.git

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

pip install -r requirements.txt

Access to Data

For the hSMAL model

The hSMAL model is available at this link. Download the hSMAL model and the additional file through this link, and place them under ./code/src/SMAL/smpl_models folder.

For DessiePIPE or evaluation, please follow the data preparation instructions to prepare the data.

Access to the pretrained weights

We provide the pretrained model available at this link. Download and place it under ./results folder.

|-- results
    |-- TOTALRANDOM (only trained on synthetic data) (trained w/o $L_gt$)
        |-- version_9:  Dessie
        |-- version_12: DinoHMR
    |-- COMBINAREAL (finetune on MagicPony dataset)
        |-- version_8: Dessie*
        |-- version_9: DinoHMR*

Run demo code

  • Testing
python test.py
  • Extract Key
python extract_key.py
  • Evaluation

    • Evaluation with kp transfer task cd code && ./script/kptransfer.sh
    • PCK, IOU, AUC Evaluation on Animal Pose and Pascal dataset cd code && ./script/evaluation2d_staths.sh
    • PCK, IOU Evaluation on MagicPony dataset cd code && ./script/evaluation2d_magicpony.sh
    • PCK, PA-MPJPE Evaluation on PFERD dataset cd code && ./script/evaluation_pferd.sh
    • Chamfer distance evaluation on PFERD dataset cd code && ./script/evaluation_pferd_chamfer.sh
      • To compare with MaigcPony or 3DFauna,
        1. cd code/src && python evalpferd_utils/pferd.py to save images for MagicPony/3D Fauna as input and save all information
        2. run demo of MagicPony or 3DFauna, save obj, w2c, campos, posed_bones for all frames
        3. set SOTA = True, PONY (True for Magicpony, False for 3DFauna) in code/src/evaluate_chamfer_pferd.py
  • Training

cd code/script

# Train only with DessiePIPE
sbatch train_dessie_1.sh --> Dessie
sbatch train_dinohmr_1.sh --> DinoHMR

# Finetune with real images 
sbatch train_dessie_finetune_magicpony.sh --> Dessie finetune with Magicpony dataset
sbatch train_dessie_finetune_staths.sh --> Dessie finetune with Staths dataset
sbatch train_dinohmr_finetune_magicpony.sh --> DinoHMR finetune with Magicpony dataset
sbatch train_dinohmr_finetune_staths.sh --> DinoHMR finetune with Staths dataset

Citation

If you use this code please cite

@inproceedings{li2024dessie,
  title={Dessie: Disentanglement for Articulated 3D Horse Shape and Pose Estimation from Images},
  author={Li, Ci and Yang, Yi and Weng, Zehang and Hernlund, Elin and Zuffi, Silvia and Kjellstr{\"o}m, Hedvig},
  booktitle={Asian Conference on Computer Vision},
  year={2024}
  }

If you use the PFERD dataset, please cite:

@article{li2024poses,
  title={The Poses for Equine Research Dataset (PFERD)},
  author={Li, Ci and Mellbin, Ylva and Krogager, Johanna and Polikovsky, Senya and Holmberg, Martin and Ghorbani, Nima and Black, Michael J and Kjellstr{\"o}m, Hedvig and Zuffi, Silvia and Hernlund, Elin},
  journal={Scientific Data},
  volume={11},
  number={1},
  pages={497},
  year={2024},
  publisher={Nature Publishing Group UK London}
}

Acknowledgements

Some great resources we benefit from: SPIN, avian-mesh, aves, TEXTure, Text2Tex, Staths, lassie, MagicPony, Splice.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published