Skip to content

Cheeun/FDSR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FDSR

This code rebuilds the searched architecture from FGNAS based on EDSR original code.

1. Code

Clone this repository into any place you want.

git clone https://github.com/Cheeun/FDSR.git
cd FDSR

2. Download Data

save DIV2K and Benchmark dataset from benchmark datasets (250MB) for evaluation DIV2K dataset (7.1GB) for training in directory dataset/

FDSR
|-- README.md
|-- environment.yml
`-- dataset
    |-- benchmark
    |   |-- Urban100
    |   |   |-- HR
    |   |   |-- LR_bicubic
    |   |   |-- bin
    |   |-- Set5
    |   |-- Set14
    |   |-- B100
    |   |-- bin
    |-- DIV2K

2. Conda Environment setting

conda env create -f environment.yml --name FDSR
conda activate FDSR

3. Quickstart (Demo)

Train and test the searched architecture

# baseline: Full EDSR model

# for scale 2 
cd FDSR_f_x2/src       # You are now in */FDSR/FDSR_f_x2/src
python main.py --scale 2 --searched_model fdsr_full_x2_3% # training
python main.py --scale 2 --searched_model fdsr_full_x2_3% --test_only # testing pretrained model

# for scale 4
cd FDSR_f_x4/src       # You are now in */FDSR/FDSR_f_x4/src
python main.py --scale 4 --searched_model fdsr_full_x4_3% # training
python main.py --scale 4 --searched_model fdsr_full_x4_3% --test_only # testing pretrained model

4. Settings

Place the dataset as in #2

5. Results

Further compressed architectures to be done.

Name Baseline Training FLOPs Pruned-ratio Parameters[K] Set5 Set14 B100 Urban100 Inference time*
baseline FDSR full EDSR x4 180G 100% 38,473 32.14 28.57 27.56 25.99 35.0
3% FDSR full EDSR x4 6G 3.3% 1,245 32.07 28.53 27.53 25.91 0.07
3% FDSR full EDSR x2 23G 3.3% 1,206 37.27 32.87 31.64 30.32 0.23

Inference time(sec)* is calculated for a single full HD image (1920x1080)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages