Skip to content

Preparation to CISS-2022 competition in Singapour

Notifications You must be signed in to change notification settings

CyberLympha/CISS

Repository files navigation

CISS

Preparation to CISS-2022 competition in Singapour

Результаты работы моделей

SWaT.A1 _ A2_Dec 2015

Метод Гиперпараметры Threshold F1 Accuracy Precision Recall
SVM nu=0.00458
kernel="rbf"
gamma=0.0008
scaler=Standard
- 0.28 0.47 0.17 0.86
SVM scaler=MinMax - 0.26 0.37 0.15 0.89
LOF n_components=5
n_neighbors=10
scaler=Standard
-165.84 0.56 0.93 1.00 0.39
LOF -30 0.73 0.94 0.91 0.60
iForest n_estimators=50
contamination=0.001
scaler=Standard
- 0.72 0.95 1.00 0.57
iForest n_estimators=200
contamination=0.005
- 0.74 0.95 0.98 0.59
LSTM-AE 64-32-32-64
window_size=30
resampling=1m
scaler=Standard
5977 0.00 0.88 0.00 0.00
LSTM-AE 800 0.00 0.88 0.60 0.00
LSTM-AE 400 0.74 0.95 1.00 0.59
MLP-AE 16-8-4-4-8-16 0.74 0.95 1.00 0.59
SOM 8x8
sigma=2.0
learning_rate=0.5
784 0.00 0.88 0.00 0.00
SOM 220 0.74 0.95 0.91 0.65

SWaT.A4 _ A5_Jul 2019

Метод Гиперпараметры Threshold F1 Accuracy Precision Recall
SVM nu=0.00458
kernel="rbf"
gamma=0.0008
scaler=Standard
- 0.49 0.50 0.35 0.81
SVM scaler=MinMax - 0.54 0.52 0.38 0.93
LOF n_components=5
n_neighbors=10
scaler=Standard
-4.5 0.49 0.62 0.41 0.60
iForest n_estimators=50
contamination=0.001
scaler=Standard
- 0.00 0.70 0.00 0.00
iForest n_estimators=200
contamination=0.05
- 0.56 0.65 0.45 0.74
LSTM-AE 64-32-32-64
window_size=30
resampling=1m
scaler=Standard
200 0.49 0.49 0.35 0.81
LSTM-AE 80.5 0.48 0.49 0.35 0.78
MLP-AE 16-8-4-4-8-16 1.89 0.45 0.63 0.40 0.52
MLP-AE 1.5 0.51 0.55 0.38 0.79
SOM 8x8
sigma=2.0
learning_rate=0.5
142 0.36 0.67 0.44 0.31
SOM 100 0.37 0.62 0.37 0.37

WADI.A2_19 Nov 2019

Метод Гиперпараметры Threshold F1 Accuracy Precision Recall
SVM nu=0.00458
kernel="rbf"
gamma=0.0008
scaler=Standard
- 0.10 0.45 0.05 0.51
SVM без "плохих" признаков - 0.39 0.95 0.71 0.27
SVM scaler=MinMax - 0.48 0.95 0.58 0.42
LOF n_components=5
n_neighbors=10
scaler=Standard
-89,3 0.00 0.94 1.00 0.00
LOF -20 0.33 0.94 0.52 0.24
iForest n_estimators=50
contamination=0.001
scaler=Standard
- 0.00 0.94 0.03 0.00
iForest n_estimators=98
contamination=0.04
- 0.28 0.88 0.21 0.41
LSTM-AE 64-32-32-64
window_size=10
resampling=1m
scaler=Standard
1865 0.08 0.44 0.04 0.39
LSTM-AE без "плохих" признаков 180 0.31 0.95 0.90 0.19
LSTM-AE scaler=MinMax 14 0.45 0.95 0.68 0.34
MLP-AE 16-8-4-4-8-16 2.5 0.08 0.44 0.04 0.39
MLP-AE без "плохих признаков" 2.15 0.11 0.95 0.99 0.06
MLP-AE 1.4 0.30 0.95 0.81 0.18
SOM 8x8
sigma=2.0
learning_rate=0.5
800 0.00 0.94 0.00 0.00
SOM 400 0.18 0.94 0.49 0.11

About

Preparation to CISS-2022 competition in Singapour

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •