Skip to content

Damin1909/DeepDenoiser

 
 

Repository files navigation

Related paper:

Zhu, W., Mousavi, S. M., & Beroza, G. C. (2018). Seismic Signal Denoising and Decomposition Using Deep Neural Networks. arXiv preprint arXiv:1811.02695.

1. Install

The code is tested under python3.6

Using virtualenv

pip install virtualenv
virtualenv .venv
source .venv/bin/activate
pip install -r requirements.txt

Using ananconda

conda create --name venv python=3.6
conda activate venv
conda install tensorflow=1.10 matplotlib scipy pandas tqdm

2. Demo data

Located in directory: Dataset/

3. Model

Located in directory: Model/190614-104802

4. Prediction

Data format:

Required a csv file and a directory of npz files.

The csv file contains one column: "fname"

The npz file contains one variable: "data"

The variable "data" is one component sample with a length of 3000 with sampling rate of 100 Hz.

python run.py --mode=pred --model_dir=Model/190614-104802 --data_dir=./Dataset/pred --data_list=./Dataset/pred.csv --output_dir=./output --plot_figure --save_result --batch_size=20

Notes:

  1. For large dataset and GPUs, larger batch size can accelerate the prediction.
  2. Plotting figures is slow. Removing the argument of --plot_figure can speed the prediction

5. Train

Data format

Required: two csv files for signal and noise, corresponding directories of the npz files.

The csv file contains four columns: "fname", "itp", "channels"

The npz file contains four variable: "data", "itp", "channels"

The shape of "data" variables has a shape of 9001 x 3

The variables "itp" is the data points of first P arrival times.

Note: In the demo data, for simplicity we use the waveform before itp as noise samples, so the train_noise_list is same as train_signal_list here.

python run.py --mode=train --train_signal_dir=./Dataset/train --train_signal_list=./Dataset/train.csv --train_noise_dir=./Dataset/train --train_noise_list=./Dataset/train.csv --batch_size=20

Please let us know of any bugs found in the code. Suggestions and collaborations are welcomed!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%