We use Git LFS to efficiently store the Dataset records that make up the ORD. To view these files locally, you'll need to install Git LFS before cloning the repository.
Please see the Submission Workflow documentation. Make sure to review the license and terms of use.
Citation | Dataset | Description | Reactions |
---|---|---|---|
Dreher, S. D. & Krska, S. W. Chemistry Informer Libraries: Conception, Early Experience, and Role in the Future of Cheminformatics. Accounts of Chemical Research 54, 1586–1596 (2021). doi: 10.1021/acs.accounts.0c00760 | Nano CN PhotoChemistry Informers Library | https://doi.org/10.1021/acs.accounts.0c00760Data from Figure S12. Data from experiment 2. Yields of products calculated by UPLC-MS using product standards. | 1728 |
Mdluli, V. et al. High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides. ACS Catalysis 10, 6977–6987 (2020). doi: 10.1021/acscatal.0c02247 | Photodehalogenation_HTE_estimated_conv_at_5hr | Ref: Bernhard, S. et al "High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides" ACS Catal. 2020, 10, 6977−6987. https://dx.doi.org/10.1021/acscatal.0c02247 | 1152 |
Stadler, A. & Kappe, C. O. Automated Library Generation Using Sequential Microwave-Assisted Chemistry. Application toward the Biginelli Multicomponent Condensation. Journal of Combinatorial Chemistry 3, 624–630 (2001). doi: 10.1021/cc010044j | Microwave-assisted Biginelli Condensation Dataset | 48-member library of Biginelli products from microwave screening paper, https://pubs.acs.org/doi/full/10.1021/cc010044j | 48 |
Gioiello, A., Rosatelli, E., Teofrasti, M., Filipponi, P. & Pellicciari, R. Building a Sulfonamide Library by Eco-Friendly Flow Synthesis. ACS Combinatorial Science 15, 235–239 (2013). doi: 10.1021/co400012m | 39 compound library from "Building a Sulfonamide Library by Eco-Friendly Flow Synthesis" | Library generated in DOI 10.1021/co400012m (Table 2) | 39 |
Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016). doi: 10.1039/c5sc04751j | link | 90 | |
Pd_CN_Coupling_Informer_Library | Ref: Chem. Sci., 2016, 7, 2604.doi: 10.1039/c5sc04751jThis palladium catalyzed C-N cross coupling dataset is the first 8 rows of Figure 4D | 264 | |
Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chemical Science 10, 370–377 (2019). doi: 10.1039/c8sc04228d | Test data from https://doi.org/10.1039/C8SC04228D | 40000 reaction SMILES downloaded from https://github.com/connorcoley/rexgen_direct | 40000 |
Validation data from https://doi.org/10.1039/C8SC04228D | 30000 reaction SMILES downloaded from https://github.com/connorcoley/rexgen_direct | 30000 | |
Training data from https://doi.org/10.1039/C8SC04228D | 409035 reaction SMILES downloaded from https://github.com/connorcoley/rexgen_direct | 409035 | |
Christensen, M. et al. Development of an automated kinetic profiling system with online HPLC for reaction optimization. Reaction Chemistry & Engineering 4, 1555–1558 (2019). doi: 10.1039/c9re00086k | Development of an automated kinetic profiling system with online HPLC for reaction optimization | Reactions from DOI: 10.1039/c9re00086k | 7 |
Zuo, Z. et al. Merging photoredox with nickel catalysis: Coupling of -carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014). doi: 10.1126/science.1255525 | Coupling of α-carboxyl sp3-carbons with aryl halides | Substrate scopes (Figure 3 and 4A) from https://science.sciencemag.org/content/345/6195/437 | 24 |
Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2014). doi: 10.1126/science.1259203 | HTE Pd-catalyzed cross-coupling screen | Reactions from Experiment 2 of DOI: 10.1126/science.1259203 | 1536 |
Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018). doi: 10.1126/science.aap9112 | link | 5760 | |
Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018). doi: 10.1126/science.aar5169 | Ahneman | C-N cross-coupling reactions from 10.1126/science.aar5169 | 4312 |
Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019). doi: 10.1126/science.aay8484 | synthesis of islatravir by biocatalytic cascade | 3 | |
Liu, R. Copper-Catalyzed Enantioselective Hydroamination of Alkenes. Organic Syntheses 95, 80–96 (2018). doi: 10.15227/orgsyn.095.0080 | Copper-Catalyzed Enantioselective Hydroamination of Alkenes | Reaction data from Org. Synth. 2018, 95, 80-96 (DOI: 10.15227/orgsyn.095.0080) | 3 |
Newman-Stonebraker, S. et al. Linking Mechanistic Analysis of Catalytic Reactivity Cliffs to Ligand Classification. (2021). doi:10.26434/chemrxiv.14388557.v1 doi: 10.26434/chemrxiv.14388557.v1 | link | 450 | |
Lowe, D. Chemical reactions from US patents (1976-Sep2016). (2017) doi:10.6084/M9.FIGSHARE.5104873.V1. doi: 10.6084/m9.figshare.5104873.v1 | uspto-grants-2016 | 93834 | |
uspto-grants-2002 | 46455 | ||
uspto-grants-1979 | 11576 | ||
uspto-grants-1981 | 14847 | ||
uspto-grants-2013 | 141950 | ||
uspto-grants-1999 | 32954 | ||
uspto-grants-1978 | 15442 | ||
uspto-grants-1986 | 12870 | ||
uspto-grants-2007 | 53107 | ||
uspto-grants-1996 | 28237 | ||
uspto-grants-1998 | 33841 | ||
uspto-grants-1977 | 16777 | ||
uspto-grants-1983 | 11026 | ||
uspto-grants-2000 | 33605 | ||
uspto-grants-1988 | 15279 | ||
uspto-grants-1987 | 15001 | ||
uspto-grants-2015 | 146889 | ||
uspto-grants-2006 | 54763 | ||
uspto-grants-1980 | 13739 | ||
uspto-grants-1991 | 19332 | ||
uspto-grants-1984 | 12743 | ||
uspto-grants-2003 | 43484 | ||
uspto-grants-2004 | 37039 | ||
uspto-grants-1993 | 22567 | ||
uspto-grants-1990 | 18641 | ||
uspto-grants-2010 | 91348 | ||
uspto-grants-1989 | 19790 | ||
uspto-grants-2009 | 70725 | ||
uspto-grants-1982 | 11340 | ||
uspto-grants-2014 | 147957 | ||
uspto-grants-2001 | 42483 | ||
uspto-grants-1992 | 20159 | ||
uspto-grants-1985 | 13628 | ||
uspto-grants-2012 | 119695 | ||
uspto-grants-2011 | 100264 | ||
uspto-grants-1995 | 20177 | ||
uspto-grants-1997 | 37068 | ||
uspto-grants-2005 | 36478 | ||
uspto-grants-2008 | 56453 | ||
uspto-grants-1994 | 19599 | ||
uspto-grants-1976 | 17855 | ||
(None) | link | 256 | |
Imidazopyridines dataset | Data form a 3 component reaction approach towards diverse imidazopyridines | 384 | |
link | 288 | ||
link | 1728 |