forked from h2oai/h2o-llmstudio
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* update to latest wave * update pipfile * update chat * update chat * update chat * wip on streaming chat * fix clean function * fix clean function * fix clean function * fix clean function * fix clean function * fix beam search * debug logging * debug logging * fix answer streaming variable * switch to q.run * switch to await * minor fixes * minor fixes * explicit copy * no sleep * remove streaming * fix numpy array * Update requirements.txt * change H2O_WAVE_NO_LOG=true * wip on streaming chat * fix format * update thread * fix function call * fix eos token generation * fix eos token generation * fix migration to gpu id for chat * move chat to separate folder * fix missing import * fix format * remove whitespace * add try except * remove try except * try to fix oom * add break * add time.sleep * add q.sleep * update n beams output * fix typo * save page * fix typo * fix typo * fix typo * fix stream * add comments * increase num history * wait for stream to finish * add dialog when clicking while streaming * add dialog when clicking while streaming * fix format * fix format * disable logging for stream update * disable logging * fix data import * Add filter for stream logging * fix data import * remove logger patch * disable logging for HTTP Request: PATCH * disable logging for HTTP Request: PATCH
- Loading branch information
1 parent
2516416
commit 92f3e7a
Showing
7 changed files
with
380 additions
and
257 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,356 @@ | ||
import asyncio | ||
import gc | ||
import logging | ||
import os | ||
import threading | ||
from typing import Any, Callable, Dict, List, Optional | ||
|
||
import numpy as np | ||
import torch | ||
from accelerate import dispatch_model, infer_auto_device_map | ||
from accelerate.utils import get_balanced_memory | ||
from h2o_wave import Q | ||
from h2o_wave import data as chat_data | ||
from h2o_wave import ui | ||
from transformers import AutoTokenizer, TextStreamer | ||
|
||
from app_utils.utils import get_experiments, get_ui_elements, parse_ui_elements | ||
from llm_studio.src.datasets.text_utils import get_tokenizer | ||
from llm_studio.src.models.text_causal_language_modeling_model import Model | ||
from llm_studio.src.utils.config_utils import load_config_yaml | ||
from llm_studio.src.utils.modeling_utils import load_checkpoint | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
USER = True | ||
BOT = False | ||
|
||
|
||
class WaveChatStreamer(TextStreamer): | ||
def __init__( | ||
self, | ||
tokenizer: AutoTokenizer, | ||
q: Q, | ||
text_cleaner: Optional[Callable] = None, | ||
**decode_kwargs, | ||
): | ||
""" | ||
Updates the chabot card in a streaming fashion | ||
""" | ||
super().__init__(tokenizer, skip_prompt=True, **decode_kwargs) | ||
self.text_cleaner = text_cleaner | ||
self.words_predicted_answer: List[str] = [] | ||
self.q = q | ||
self.loop = asyncio.get_event_loop() | ||
self.finished = False | ||
|
||
def on_finalized_text(self, text: str, stream_end: bool = False): | ||
self.words_predicted_answer += [text] | ||
self.loop.create_task(self.push_to_chat()) | ||
|
||
async def push_to_chat(self): | ||
self.q.page["experiment/display/chat"].data[-1] = [self.answer, BOT] | ||
await self.q.page.save() | ||
|
||
@property | ||
def answer(self): | ||
""" | ||
Create the answer by joining the generated words. | ||
By this, self.text_cleaner does not need to be idempotent. | ||
""" | ||
answer = "".join(self.words_predicted_answer) | ||
if answer.endswith(self.tokenizer.eos_token): | ||
# text generation is stopped | ||
answer = answer.replace(self.tokenizer.eos_token, "") | ||
if self.text_cleaner: | ||
answer = self.text_cleaner(answer) | ||
return answer | ||
|
||
def end(self): | ||
super().end() | ||
self.finished = True | ||
|
||
|
||
async def chat_tab(q: Q, load_model=True): | ||
# gpu id in UI is offset by 1 to be in sync with experiment UI | ||
gpu_id = q.client["gpu_used_for_chat"] - 1 | ||
if gpu_is_blocked(q, gpu_id): | ||
return | ||
|
||
if load_model: | ||
loading_message = "Loading the model..." | ||
else: | ||
loading_message = "Chat History cleaned. How can I help you?" | ||
|
||
q.page["experiment/display/chat"] = ui.chatbot_card( | ||
box="first", | ||
data=chat_data(fields="content from_user", t="list"), # type: ignore | ||
name="experiment/display/chat/chatbot", | ||
) | ||
q.page["experiment/display/chat"].data += [loading_message, BOT] | ||
q.client["experiment/display/chat/messages"] = [] | ||
q.client.delete_cards.add("experiment/display/chat") | ||
|
||
q.page["experiment/display/chat/settings"] = ui.form_card( | ||
box="second", | ||
items=[ | ||
ui.expander( | ||
name="chat_settings", | ||
label="Chat Settings", | ||
items=[ui.progress(label="Loading the model...")], | ||
expanded=True, | ||
) | ||
], | ||
) | ||
q.client.delete_cards.add("experiment/display/chat/settings") | ||
|
||
await q.page.save() | ||
logger.info(torch.cuda.memory_allocated()) | ||
|
||
if load_model: | ||
cfg, model, tokenizer = load_cfg_model_tokenizer( | ||
q.client["experiment/display/experiment_path"], device=f"cuda:{gpu_id}" | ||
) | ||
q.client["experiment/display/chat/cfg"] = cfg | ||
q.client["experiment/display/chat/model"] = model | ||
q.client["experiment/display/chat/tokenizer"] = tokenizer | ||
initial_message = "Model successfully loaded, how can I help you?" | ||
|
||
else: | ||
cfg = q.client["experiment/display/chat/cfg"] | ||
assert q.client["experiment/display/chat/model"] is not None | ||
assert q.client["experiment/display/chat/tokenizer"] is not None | ||
# Do not update loading_message. | ||
initial_message = loading_message | ||
|
||
# Hide fields that are should not be visible in the UI | ||
cfg.prediction._visibility["metric"] = -1 | ||
cfg.prediction._visibility["batch_size_inference"] = -1 | ||
cfg.prediction._visibility["min_length_inference"] = -1 | ||
cfg.prediction._visibility["stop_tokens"] = -1 | ||
|
||
logger.info(torch.cuda.memory_allocated()) | ||
q.page["experiment/display/chat"].data[0] = [ | ||
initial_message, | ||
BOT, | ||
] | ||
|
||
option_items = get_ui_elements( | ||
cfg=q.client["experiment/display/chat/cfg"].prediction, | ||
q=q, | ||
pre="chat/cfg_predictions", | ||
) | ||
q.page["experiment/display/chat/settings"] = ui.form_card( | ||
box="second", | ||
items=[ | ||
ui.button( | ||
name="experiment/display/chat/clear_history", | ||
label="Clear History", | ||
primary=True, | ||
), | ||
ui.expander( | ||
name="chat_settings", | ||
label="Chat Settings", | ||
items=option_items, | ||
expanded=True, | ||
), | ||
], | ||
) | ||
|
||
|
||
def gpu_is_blocked(q, gpu_id): | ||
experiments = get_experiments(q=q) | ||
running_experiments = experiments[experiments.status.isin(["running"])] | ||
gpu_blocked = any( | ||
[ | ||
str(gpu_id) in gpu_list | ||
for gpu_list in running_experiments["gpu_list"] | ||
.apply(lambda x: x.split(",")) | ||
.to_list() | ||
] | ||
) | ||
if gpu_blocked: | ||
q.page["experiment/display/chat"] = ui.form_card( | ||
box="first", | ||
items=[ | ||
ui.text( | ||
f"""Chatbot is not available when GPU{q.client["gpu_used_for_chat"]} | ||
is blocked by another experiment. | ||
You can change "Gpu used for Chat" in the settings tab | ||
to use another GPU for the chatbot. """ | ||
) | ||
], | ||
title="", | ||
) | ||
q.client.delete_cards.add("experiment/display/chat") | ||
return True | ||
return False | ||
|
||
|
||
@torch.inference_mode(mode=True) | ||
async def chat_update(q: Q) -> None: | ||
""" | ||
Update the chatbot with the new message. | ||
""" | ||
q.client["experiment/display/chat/finished"] = False | ||
|
||
cfg_prediction = parse_ui_elements( | ||
cfg=q.client["experiment/display/chat/cfg"].prediction, | ||
q=q, | ||
pre="chat/cfg_predictions/cfg/", | ||
) | ||
logger.info(f"Using chatbot config: {cfg_prediction}") | ||
q.client["experiment/display/chat/cfg"].prediction = cfg_prediction | ||
|
||
prompt = q.client["experiment/display/chat/chatbot"] | ||
|
||
message = [prompt, USER] | ||
q.client["experiment/display/chat/messages"].append(message) | ||
q.page["experiment/display/chat"].data += message | ||
q.page["experiment/display/chat"].data += ["", BOT] | ||
await q.page.save() | ||
|
||
cfg = q.client["experiment/display/chat/cfg"] | ||
model: Model = q.client["experiment/display/chat/model"] | ||
tokenizer = q.client["experiment/display/chat/tokenizer"] | ||
|
||
full_prompt = "" | ||
if len(q.client["experiment/display/chat/messages"]): | ||
for prev_message in q.client["experiment/display/chat/messages"][ | ||
-(cfg.prediction.num_history + 1) : | ||
]: | ||
if prev_message[1] is USER: | ||
prev_message = cfg.dataset.dataset_class.parse_prompt( | ||
cfg, prev_message[0] | ||
) | ||
else: | ||
prev_message = prev_message[0] | ||
if cfg.dataset.add_eos_token_to_answer: | ||
prev_message += cfg._tokenizer_eos_token | ||
|
||
full_prompt += prev_message | ||
logger.info(f"Full prompt: {full_prompt}") | ||
inputs = cfg.dataset.dataset_class.encode( | ||
tokenizer, full_prompt, cfg.tokenizer.max_length_prompt, "left" | ||
) | ||
inputs["prompt_input_ids"] = ( | ||
inputs.pop("input_ids").unsqueeze(0).to(cfg.environment._device) | ||
) | ||
inputs["prompt_attention_mask"] = ( | ||
inputs.pop("attention_mask").unsqueeze(0).to(cfg.environment._device) | ||
) | ||
|
||
def text_cleaner(text: str) -> str: | ||
return cfg.dataset.dataset_class.clean_output( | ||
output={"predicted_text": np.array([text])}, prompts=[full_prompt], cfg=cfg | ||
)["predicted_text"][0] | ||
|
||
if cfg.prediction.num_beams == 1: | ||
streamer = WaveChatStreamer(tokenizer=tokenizer, q=q, text_cleaner=text_cleaner) | ||
# Need to start generation in a separate thread, otherwise streaming is blocked | ||
thread = threading.Thread( | ||
target=generate, | ||
kwargs=dict(model=model, inputs=inputs, cfg=cfg, streamer=streamer), | ||
) | ||
try: | ||
thread.start() | ||
finally: | ||
while True: | ||
if streamer.finished: | ||
thread.join() | ||
predicted_text = streamer.answer | ||
break | ||
await q.sleep(1) | ||
else: | ||
# ValueError: `streamer` cannot be used with beam search (yet!). | ||
# Make sure that `num_beams` is set to 1. | ||
logger.info("Not streaming output, as it cannot be used with beam search.") | ||
q.page["experiment/display/chat"].data[-1] = ["...", BOT] | ||
await q.page.save() | ||
predicted_answer_ids = generate(model, inputs, cfg)[0] | ||
predicted_text = tokenizer.decode( | ||
predicted_answer_ids, skip_special_tokens=True | ||
) | ||
predicted_text = text_cleaner(predicted_text) | ||
|
||
logger.info(f"Predicted Answer: {predicted_text}") | ||
message = [predicted_text, BOT] | ||
q.client["experiment/display/chat/messages"].append(message) | ||
q.page["experiment/display/chat"].data[-1] = message | ||
|
||
del inputs | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
q.client["experiment/display/chat/finished"] = True | ||
|
||
|
||
def generate(model: Model, inputs: Dict, cfg: Any, streamer: TextStreamer = None): | ||
with torch.cuda.amp.autocast(): | ||
output = model.generate(batch=inputs, cfg=cfg, streamer=streamer).detach().cpu() | ||
return output | ||
|
||
|
||
def load_cfg_model_tokenizer( | ||
experiment_path: str, merge: bool = False, device: str = "cuda:0" | ||
): | ||
cfg = load_config_yaml(os.path.join(experiment_path, "cfg.yaml")) | ||
cfg.architecture.pretrained = False | ||
cfg.architecture.gradient_checkpointing = False | ||
cfg.environment._device = device.replace("_shard", "") | ||
cfg.environment._local_rank = 0 | ||
cfg.prediction._visibility["num_history"] = 1 | ||
|
||
tokenizer = get_tokenizer(cfg) | ||
|
||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
if ( | ||
merge | ||
and cfg.training.lora | ||
and cfg.architecture.backbone_dtype in ("int4", "int8") | ||
): | ||
logger.info("Loading backbone in float16 for merging LORA weights.") | ||
cfg.architecture.backbone_dtype = "float16" | ||
cfg.architecture.pretrained = True | ||
|
||
with torch.device(cfg.environment._device): | ||
model = cfg.architecture.model_class(cfg) | ||
cfg.architecture.pretrained_weights = os.path.join( | ||
experiment_path, "checkpoint.pth" | ||
) | ||
load_checkpoint(cfg, model, strict=False) | ||
|
||
if merge and cfg.training.lora: | ||
# merges the LoRa layers into the base model. | ||
# This is needed if one wants to use the base model as a standalone model. | ||
logger.info("Merging LORA layers with base model.") | ||
model.backbone = model.backbone.merge_and_unload() | ||
|
||
if device == "cpu_shard": | ||
max_memory = get_balanced_memory( | ||
model, | ||
) | ||
device_map = infer_auto_device_map(model, max_memory=max_memory) | ||
model = dispatch_model( | ||
model, | ||
device_map=device_map, | ||
) | ||
|
||
model = model.eval() | ||
model.backbone.use_cache = True | ||
|
||
return cfg, model, tokenizer | ||
|
||
|
||
async def show_chat_is_running_dialog(q): | ||
q.page["meta"].dialog = ui.dialog( | ||
title="Text Generation is streaming.", | ||
name="chatbot_running_dialog", | ||
items=[ | ||
ui.text("Please wait till the text generation has stopped."), | ||
], | ||
closable=True, | ||
) | ||
await q.page.save() |
Oops, something went wrong.