Skip to content

Code for 'Joint Optimization Framework for Learning with Noisy Labels'

Notifications You must be signed in to change notification settings

Dthirteen/JointOptimization

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Joint Optimization Framework for Learning with Noisy Labels

This is an unofficial PyTorch implementation of Joint Optimization Framework for Learning with Noisy Labels. The official Chainer implementation is here.

Requirements

  • Python 3.6
  • PyTorch 0.4
  • torchvision
  • progress
  • matplotlib
  • numpy

Usage

Train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.7):

First,

python train.py --gpu 0 --out first_sn07 --lr 0.08 --alpha 1.2 --beta 0.8 --percent 0.7

to train and relabel the dataset.

Secondly,

python retrain.py --gpu 0 --out second_sn07 --label first_sn07

to retrain on the relabeled dataset.

Train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4):

First,

python train.py --gpu 0 --out first_an04 --lr 0.03 --alpha 0.8 --beta 0.4 --percent 0.4 --asym

to train and relabel the dataset.

Secondly,

python retrain.py --gpu 0 --out second_an04 --label first_an04

to retrain on the relabeled dataset.

References

  • D. Tanaka, D. Ikami, T. Yamasaki and K. Aizawa. "Joint Optimization Framework for Learning with Noisy Labels", in CVPR, 2018.

About

Code for 'Joint Optimization Framework for Learning with Noisy Labels'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%