-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a288721
commit 621b7c8
Showing
9 changed files
with
1,827 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
# like dsb_af25lme_mal2_s5_p8a1, but 12 candidates instead of 8 and interpolation order 0 instead of 1 | ||
|
||
import numpy as np | ||
import data_transforms | ||
import data_iterators | ||
import pathfinder | ||
import lasagne as nn | ||
import nn_lung | ||
from collections import namedtuple | ||
from functools import partial | ||
import lasagne.layers.dnn as dnn | ||
import theano.tensor as T | ||
import utils | ||
import utils_lung | ||
import os | ||
|
||
# TODO: import correct config here | ||
candidates_config = 'dsb_c3_s5_p8a1' | ||
|
||
restart_from_save = None | ||
rng = np.random.RandomState(42) | ||
|
||
predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH) | ||
candidates_path = predictions_dir + '/%s' % candidates_config | ||
id2candidates_path = utils_lung.get_candidates_paths(candidates_path) | ||
|
||
# transformations | ||
p_transform = {'patch_size': (48, 48, 48), | ||
'mm_patch_size': (48, 48, 48), | ||
'pixel_spacing': (1., 1., 1.), | ||
'order': 0, | ||
} | ||
|
||
p_transform_augment = { | ||
'translation_range_z': [-5, 5], | ||
'translation_range_y': [-5, 5], | ||
'translation_range_x': [-5, 5], | ||
'rotation_range_z': [-10, 10], | ||
'rotation_range_y': [-10, 10], | ||
'rotation_range_x': [-10, 10] | ||
} | ||
n_candidates_per_patient = 12 | ||
|
||
|
||
def data_prep_function(data, patch_centers, pixel_spacing, p_transform, | ||
p_transform_augment, **kwargs): | ||
x = data_transforms.transform_dsb_candidates(data=data, | ||
patch_centers=patch_centers, | ||
p_transform=p_transform, | ||
p_transform_augment=p_transform_augment, | ||
pixel_spacing=pixel_spacing) | ||
x = data_transforms.hu2normHU(x) | ||
return x | ||
|
||
|
||
data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment, | ||
p_transform=p_transform) | ||
data_prep_function_valid = partial(data_prep_function, p_transform_augment=None, | ||
p_transform=p_transform) | ||
data_prep_function_tta = partial(data_prep_function, p_transform_augment=p_transform_augment, | ||
p_transform=p_transform) | ||
|
||
|
||
def candidates_prep_function(all_candidates, n_selection=None): | ||
if n_selection: | ||
all_candidates = all_candidates[:n_selection] | ||
return all_candidates | ||
|
||
# data iterators | ||
batch_size = 1 | ||
|
||
train_valid_ids = utils.load_pkl(pathfinder.VALIDATION_SPLIT_PATH) | ||
train_pids, valid_pids, test_pids = train_valid_ids['training'], train_valid_ids['validation'], train_valid_ids['test'] | ||
print 'n train', len(train_pids) | ||
print 'n valid', len(valid_pids) | ||
|
||
train_data_iterator = data_iterators.DSBPatientsDataGenerator(data_path=pathfinder.DATA_PATH, | ||
batch_size=batch_size, | ||
transform_params=p_transform, | ||
n_candidates_per_patient=n_candidates_per_patient, | ||
data_prep_fun=data_prep_function_train, | ||
candidates_prep_fun = candidates_prep_function, | ||
id2candidates_path=id2candidates_path, | ||
rng=rng, | ||
patient_ids=train_pids, | ||
random=True, infinite=True) | ||
|
||
valid_data_iterator = data_iterators.DSBPatientsDataGenerator(data_path=pathfinder.DATA_PATH, | ||
batch_size=1, | ||
transform_params=p_transform, | ||
n_candidates_per_patient=n_candidates_per_patient, | ||
data_prep_fun=data_prep_function_valid, | ||
candidates_prep_fun = candidates_prep_function, | ||
id2candidates_path=id2candidates_path, | ||
rng=rng, | ||
patient_ids=valid_pids, | ||
random=False, infinite=False) | ||
|
||
|
||
test_data_iterator = data_iterators.DSBPatientsDataGenerator(data_path=pathfinder.DATA_PATH, | ||
batch_size=1, | ||
transform_params=p_transform, | ||
n_candidates_per_patient=n_candidates_per_patient, | ||
data_prep_fun=data_prep_function_valid, | ||
candidates_prep_fun = candidates_prep_function, | ||
id2candidates_path=id2candidates_path, | ||
rng=rng, | ||
patient_ids=test_pids, | ||
random=False, infinite=False) | ||
|
||
|
||
tta_test_data_iterator = data_iterators.DSBPatientsDataGeneratorTTA(data_path=pathfinder.DATA_PATH, | ||
transform_params=p_transform, | ||
id2candidates_path=id2candidates_path, | ||
data_prep_fun=data_prep_function_tta, | ||
candidates_prep_fun = candidates_prep_function, | ||
n_candidates_per_patient=n_candidates_per_patient, | ||
patient_ids=test_pids, | ||
tta = 64) | ||
|
||
nchunks_per_epoch = train_data_iterator.nsamples / batch_size | ||
max_nchunks = nchunks_per_epoch * 10 | ||
|
||
validate_every = int(1 * nchunks_per_epoch) | ||
save_every = int(0.25 * nchunks_per_epoch) | ||
|
||
learning_rate_schedule = { | ||
0: 1e-5, | ||
int(5 * nchunks_per_epoch): 2e-6, | ||
int(6 * nchunks_per_epoch): 1e-6, | ||
int(7 * nchunks_per_epoch): 5e-7, | ||
int(9 * nchunks_per_epoch): 2e-7 | ||
} | ||
|
||
# model | ||
# model | ||
conv3d = partial(dnn.Conv3DDNNLayer, | ||
filter_size=3, | ||
pad='same', | ||
W=nn.init.Orthogonal(), | ||
b=nn.init.Constant(0.01), | ||
nonlinearity=nn.nonlinearities.very_leaky_rectify) | ||
|
||
max_pool3d = partial(dnn.MaxPool3DDNNLayer, | ||
pool_size=2) | ||
|
||
drop = nn.layers.DropoutLayer | ||
|
||
bn = nn.layers.batch_norm | ||
|
||
dense = partial(nn.layers.DenseLayer, | ||
W=nn.init.Orthogonal('relu'), | ||
b=nn.init.Constant(0.0), | ||
nonlinearity=nn.nonlinearities.very_leaky_rectify) | ||
|
||
|
||
def inrn_v2(lin): | ||
n_base_filter = 32 | ||
|
||
l1 = conv3d(lin, n_base_filter, filter_size=1) | ||
|
||
l2 = conv3d(lin, n_base_filter, filter_size=1) | ||
l2 = conv3d(l2, n_base_filter, filter_size=3) | ||
|
||
l3 = conv3d(lin, n_base_filter, filter_size=1) | ||
l3 = conv3d(l3, n_base_filter, filter_size=3) | ||
l3 = conv3d(l3, n_base_filter, filter_size=3) | ||
|
||
l = nn.layers.ConcatLayer([l1, l2, l3]) | ||
|
||
l = conv3d(l, lin.output_shape[1], filter_size=1) | ||
|
||
l = nn.layers.ElemwiseSumLayer([l, lin]) | ||
|
||
l = nn.layers.NonlinearityLayer(l, nonlinearity=nn.nonlinearities.rectify) | ||
|
||
return l | ||
|
||
|
||
def inrn_v2_red(lin): | ||
# We want to reduce our total volume /4 | ||
|
||
den = 16 | ||
nom2 = 4 | ||
nom3 = 5 | ||
nom4 = 7 | ||
|
||
ins = lin.output_shape[1] | ||
|
||
l1 = max_pool3d(lin) | ||
|
||
l2 = conv3d(lin, ins // den * nom2, filter_size=3, stride=2) | ||
|
||
l3 = conv3d(lin, ins // den * nom2, filter_size=1) | ||
l3 = conv3d(l3, ins // den * nom3, filter_size=3, stride=2) | ||
|
||
l4 = conv3d(lin, ins // den * nom2, filter_size=1) | ||
l4 = conv3d(l4, ins // den * nom3, filter_size=3) | ||
l4 = conv3d(l4, ins // den * nom4, filter_size=3, stride=2) | ||
|
||
l = nn.layers.ConcatLayer([l1, l2, l3, l4]) | ||
|
||
return l | ||
|
||
|
||
def feat_red(lin): | ||
# We want to reduce the feature maps by a factor of 2 | ||
ins = lin.output_shape[1] | ||
l = conv3d(lin, ins // 2, filter_size=1) | ||
return l | ||
|
||
def load_pretrained_model(l_in): | ||
|
||
l = conv3d(l_in, 64) | ||
l = inrn_v2_red(l) | ||
l = inrn_v2(l) | ||
|
||
l = inrn_v2_red(l) | ||
l = inrn_v2(l) | ||
|
||
l = inrn_v2_red(l) | ||
l = inrn_v2_red(l) | ||
|
||
l = dense(drop(l), 512) | ||
|
||
l = nn.layers.DenseLayer(l,1,nonlinearity=nn.nonlinearities.sigmoid, W=nn.init.Orthogonal(), | ||
b=nn.init.Constant(0)) | ||
|
||
|
||
metadata = utils.load_pkl(os.path.join("/home/eavsteen/dsb3/storage/metadata/dsb3/models/eavsteen/","r_fred_malignancy_2-20170328-230443.pkl")) | ||
nn.layers.set_all_param_values(l, metadata['param_values']) | ||
|
||
return l | ||
|
||
|
||
def build_model(): | ||
l_in = nn.layers.InputLayer((None, n_candidates_per_patient,) + p_transform['patch_size']) | ||
l_in_rshp = nn.layers.ReshapeLayer(l_in, (-1, 1,) + p_transform['patch_size']) | ||
l_target = nn.layers.InputLayer((batch_size,)) | ||
|
||
l = load_pretrained_model(l_in_rshp) | ||
|
||
#ins = penultimate_layer.output_shape[1] | ||
# l = conv3d(penultimate_layer, ins, filter_size=3, stride=2) | ||
# #l = feat_red(l) | ||
# | ||
# | ||
# l = nn.layers.DropoutLayer(l) | ||
# # | ||
# l = nn.layers.DenseLayer(l, num_units=256, W=nn.init.Orthogonal(), | ||
# nonlinearity=nn.nonlinearities.rectify) | ||
|
||
#l = nn.layers.DropoutLayer(l) | ||
|
||
l = nn.layers.ReshapeLayer(l, (-1, n_candidates_per_patient, 1)) | ||
|
||
l_out = nn_lung.LogMeanExp(l,r=16, axis=(1, 2), name='LME') | ||
|
||
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target) | ||
|
||
|
||
def build_objective(model, deterministic=False, epsilon=1e-12): | ||
p = nn.layers.get_output(model.l_out, deterministic=deterministic) | ||
targets = T.flatten(nn.layers.get_output(model.l_target)) | ||
p = T.clip(p, epsilon, 1.-epsilon) | ||
bce = T.nnet.binary_crossentropy(p, targets) | ||
return T.mean(bce) | ||
|
||
|
||
def build_updates(train_loss, model, learning_rate): | ||
|
||
return nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out, trainable=True), learning_rate) |
Oops, something went wrong.