Skip to content

Fury: the secure, private, untraceable cryptocurrency

License

Notifications You must be signed in to change notification settings

FuryCoin/Fury

 
 

Repository files navigation

Fury

Copyright (c) 2018 Fury Project, Derived from 2014-2018, The Monero Project Portions Copyright (c) 2012-2013 The Cryptonote developers.

Development resources

Introduction

Fury is a cryptocurrency built on Monero v7 with the aim to become one of a few standard currencies for digital payments. The main characteristics of Fury are detailed below:

  • Total Supply: 1,000,000,000

  • Block Time: 1 minute

  • Algorithm: Cryptonight Superfast

  • Reward: ~1,500 FURY at inception

  • Emission structure: logarithmic until max supply is reached in 2020. For more information: TBA

License

See LICENSE.

Scheduled software upgrades

Software upgrade block height Date Fork version Details
0 28-09-2018 v1 Genesis block
1 28-09-2018 v7 Start of the blockchain
9 10-01-2019 v9 Algo change, Bulletproofs
12 05-04-2019 v12 Service Nodes

Note future releases block heights and dates may change, so make sure to frequently check github, our website, the forums, etc. for the most up to date information.

Compiling Fury from source

Dependencies

The following table summarizes the tools and libraries required to build. A few of the libraries are also included in this repository (marked as "Vendored"). By default, the build uses the library installed on the system, and ignores the vendored sources. However, if no library is found installed on the system, then the vendored source will be built and used. The vendored sources are also used for statically-linked builds because distribution packages often include only shared library binaries (.so) but not static library archives (.a).

Dep Min. version Vendored Debian/Ubuntu pkg Arch pkg Fedora Optional Purpose
GCC 4.7.3 NO build-essential base-devel gcc NO
CMake 3.5 NO cmake cmake cmake NO
pkg-config any NO pkg-config base-devel pkgconf NO
Boost 1.58 NO libboost-all-dev boost boost-devel NO C++ libraries
OpenSSL basically any NO libssl-dev openssl openssl-devel NO sha256 sum
libzmq 3.0.0 NO libzmq3-dev zeromq cppzmq-devel NO ZeroMQ library
OpenPGM ? NO libpgm-dev libpgm openpgm-devel NO For ZeroMQ
libnorm[2] ? NO libnorm-dev ` YES For ZeroMQ
libunbound 1.4.16 YES libunbound-dev unbound unbound-devel NO DNS resolver
libsodium ? NO libsodium-dev libsodium libsodium-devel NO cryptography
libunwind any NO libunwind8-dev libunwind libunwind-devel YES Stack traces
liblzma any NO liblzma-dev xz xz-devel YES For libunwind
libreadline 6.3.0 NO libreadline6-dev readline readline-devel YES Input editing
ldns 1.6.17 NO libldns-dev ldns ldns-devel YES SSL toolkit
expat 1.1 NO libexpat1-dev expat expat-devel YES XML parsing
GTest 1.5 YES libgtest-dev[1] gtest gtest-devel YES Test suite
Doxygen any NO doxygen doxygen doxygen YES Documentation
Graphviz any NO graphviz graphviz graphviz YES Documentation

[1] On Debian/Ubuntu libgtest-dev only includes sources and headers. You must build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/ [2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise

Debian / Ubuntu one liner for all dependencies
sudo apt update && sudo apt install build-essential cmake pkg-config libboost-all-dev libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev doxygen graphviz libpgm-dev

Cloning the repository

 $ git clone https://github.com/FuryCoin/Fury 

Build instructions

Fury uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.

On Linux and OS X

  • Install the dependencies

  • Change to the root of the source code directory and build:

      cd Fury
      make release
    

    Optional: If your machine has several cores and enough memory, enable parallel build by running make -j<number of threads> instead of make. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.

    Note: If cmake can not find zmq.hpp file on OS X, installing zmq.hpp from https://github.com/zeromq/cppzmq to /usr/local/include should fix that error.

  • The resulting executables can be found in build/release/bin

  • Add PATH="$PATH:$HOME/Fury/build/release/bin" to .profile

  • Run Fury with fury --detach

  • Optional: build and run the test suite to verify the binaries:

      make release-test
    

    NOTE: core_tests test may take a few hours to complete.

  • Optional: to build binaries suitable for debugging:

       make debug
    
  • Optional: to build statically-linked binaries:

       make release-static
    

Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.

  • Optional: build documentation in doc/html (omit HAVE_DOT=YES if graphviz is not installed):

      HAVE_DOT=YES doxygen Doxyfile
    

On Windows:

Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.

Preparing the build environment

  • Download and install the MSYS2 installer, either the 64-bit (x86_64) or the 32-bit (i686) package, depending on your system.

  • Note: Installation must be on the C drive and root directory as result of Monero issue 3167.

  • Open the MSYS shell via the MSYS2 MSYS shortcut in the Start Menu or "C:\msys64\msys2_shell.cmd -msys"

  • Update packages using pacman:

      pacman -Syu  
    
  • Exit the MSYS shell using Alt+F4 when you get a warning stating: "terminate MSYS2 without returning to shell and check for updates again/for example close your terminal window instead of calling exit"

  • Open the MSYS MinGW shell via the MSYS2 MinGW 64-bit shortcut or "C:\msys64\msys2_shell.cmd -mingw64" for 64-bit builds or via the MSYS2 MinGW 32-bit shortcut or "C:\msys64\msys2_shell.cmd -mingw32" for 32-bit builds

  • Update packages again using pacman:

      pacman -Syu  
    
  • Install dependencies:

    To build for 64-bit Windows:

      pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium mingw-w64-x86_64-hidapi git
    

    To build for 32-bit Windows:

      pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium mingw-w64-i686-hidapi git
    
  • Close and reopen the MSYS MinGW shell via MSYS2 MinGW 64-bit shortcut on 64-bit Windows or MSYS2 MinGW 32-bit shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.

Cloning

  • To git clone, run:

    git clone https://github.com/FuryCoin/Fury 
    

Building

  • If you are on a 64-bit system, run:

      cd Fury
      make release-static-win64
    
  • If you are on a 32-bit system, run:

      cd Fury
      make release-static-win32
    
  • The resulting executables can be found in build/release/bin

Building portable statically linked binaries

By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:

  • make release-static-linux-x86_64 builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processors
  • make release-static-linux-i686 builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processors
  • make release-static-linux-armv8 builds binaries on Linux portable across POSIX systems on armv8 processors
  • make release-static-linux-armv7 builds binaries on Linux portable across POSIX systems on armv7 processors
  • make release-static-linux-armv6 builds binaries on Linux portable across POSIX systems on armv6 processors
  • make release-static-win64 builds binaries on 64-bit Windows portable across 64-bit Windows systems
  • make release-static-win32 builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems

Running furyd

The build places the binary in bin/ sub-directory within the build directory from which cmake was invoked (repository root by default). To run in foreground:

./bin/furyd

To list all available options, run ./bin/furyd --help. Options can be specified either on the command line or in a configuration file passed by the --config-file argument. To specify an option in the configuration file, add a line with the syntax argumentname=value, where argumentname is the name of the argument without the leading dashes, for example log-level=1.

To run in background:

./bin/furyd --log-file furyd.log --detach

To run as a systemd service, copy furyd.service to /etc/systemd/system/ and furyd.conf to /etc/. The example service assumes that the user fury exists and its home is the data directory specified in the example config.

If you're on Mac, you may need to add the --max-concurrency 1 option to monero-wallet-cli, and possibly monerod, if you get crashes refreshing.

About

Fury: the secure, private, untraceable cryptocurrency

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 85.5%
  • C 9.1%
  • CMake 2.1%
  • Objective-C 1.4%
  • Makefile 0.7%
  • Python 0.6%
  • Other 0.6%