Copyright (c) 2018 Fury Project, Derived from 2014-2018, The Monero Project Portions Copyright (c) 2012-2013 The Cryptonote developers.
- Web: Fury Website
- Explorer: Fury Explorer
- Official Mining Pool: Fury Pool
- Bitcointalk: Fury ANN
- Reddit: TBA
- Twitter: Fury Twitter
- Telegram: TBA
- Discord: Fury Discord
- GitHub: https://github.com/FuryCoin/Fury
Fury is a cryptocurrency built on Monero v7 with the aim to become one of a few standard currencies for digital payments. The main characteristics of Fury are detailed below:
-
Total Supply: 1,000,000,000
-
Block Time: 1 minute
-
Algorithm: Cryptonight Superfast
-
Reward: ~1,500 FURY at inception
-
Emission structure: logarithmic until max supply is reached in 2020. For more information: TBA
See LICENSE.
Software upgrade block height | Date | Fork version | Details |
---|---|---|---|
0 | 28-09-2018 | v1 | Genesis block |
1 | 28-09-2018 | v7 | Start of the blockchain |
9 | 10-01-2019 | v9 | Algo change, Bulletproofs |
12 | 05-04-2019 | v12 | Service Nodes |
Note future releases block heights and dates may change, so make sure to frequently check github, our website, the forums, etc. for the most up to date information.
The following table summarizes the tools and libraries required to build. A
few of the libraries are also included in this repository (marked as
"Vendored"). By default, the build uses the library installed on the system,
and ignores the vendored sources. However, if no library is found installed on
the system, then the vendored source will be built and used. The vendored
sources are also used for statically-linked builds because distribution
packages often include only shared library binaries (.so
) but not static
library archives (.a
).
Dep | Min. version | Vendored | Debian/Ubuntu pkg | Arch pkg | Fedora | Optional | Purpose |
---|---|---|---|---|---|---|---|
GCC | 4.7.3 | NO | build-essential |
base-devel |
gcc |
NO | |
CMake | 3.5 | NO | cmake |
cmake |
cmake |
NO | |
pkg-config | any | NO | pkg-config |
base-devel |
pkgconf |
NO | |
Boost | 1.58 | NO | libboost-all-dev |
boost |
boost-devel |
NO | C++ libraries |
OpenSSL | basically any | NO | libssl-dev |
openssl |
openssl-devel |
NO | sha256 sum |
libzmq | 3.0.0 | NO | libzmq3-dev |
zeromq |
cppzmq-devel |
NO | ZeroMQ library |
OpenPGM | ? | NO | libpgm-dev |
libpgm |
openpgm-devel |
NO | For ZeroMQ |
libnorm[2] | ? | NO | libnorm-dev |
` | YES | For ZeroMQ | |
libunbound | 1.4.16 | YES | libunbound-dev |
unbound |
unbound-devel |
NO | DNS resolver |
libsodium | ? | NO | libsodium-dev |
libsodium |
libsodium-devel |
NO | cryptography |
libunwind | any | NO | libunwind8-dev |
libunwind |
libunwind-devel |
YES | Stack traces |
liblzma | any | NO | liblzma-dev |
xz |
xz-devel |
YES | For libunwind |
libreadline | 6.3.0 | NO | libreadline6-dev |
readline |
readline-devel |
YES | Input editing |
ldns | 1.6.17 | NO | libldns-dev |
ldns |
ldns-devel |
YES | SSL toolkit |
expat | 1.1 | NO | libexpat1-dev |
expat |
expat-devel |
YES | XML parsing |
GTest | 1.5 | YES | libgtest-dev [1] |
gtest |
gtest-devel |
YES | Test suite |
Doxygen | any | NO | doxygen |
doxygen |
doxygen |
YES | Documentation |
Graphviz | any | NO | graphviz |
graphviz |
graphviz |
YES | Documentation |
[1] On Debian/Ubuntu libgtest-dev
only includes sources and headers. You must
build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/
[2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise
Debian / Ubuntu one liner for all dependencies
sudo apt update && sudo apt install build-essential cmake pkg-config libboost-all-dev libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev doxygen graphviz libpgm-dev
$ git clone https://github.com/FuryCoin/Fury
Fury uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.
-
Install the dependencies
-
Change to the root of the source code directory and build:
cd Fury make release
Optional: If your machine has several cores and enough memory, enable parallel build by running
make -j<number of threads>
instead ofmake
. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.Note: If cmake can not find zmq.hpp file on OS X, installing
zmq.hpp
from https://github.com/zeromq/cppzmq to/usr/local/include
should fix that error. -
The resulting executables can be found in
build/release/bin
-
Add
PATH="$PATH:$HOME/Fury/build/release/bin"
to.profile
-
Run Fury with
fury --detach
-
Optional: build and run the test suite to verify the binaries:
make release-test
NOTE:
core_tests
test may take a few hours to complete. -
Optional: to build binaries suitable for debugging:
make debug
-
Optional: to build statically-linked binaries:
make release-static
Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.
-
Optional: build documentation in
doc/html
(omitHAVE_DOT=YES
ifgraphviz
is not installed):HAVE_DOT=YES doxygen Doxyfile
Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.
Preparing the build environment
-
Download and install the MSYS2 installer, either the 64-bit (x86_64) or the 32-bit (i686) package, depending on your system.
-
Note: Installation must be on the C drive and root directory as result of Monero issue 3167.
-
Open the MSYS shell via the
MSYS2 MSYS
shortcut in the Start Menu or "C:\msys64\msys2_shell.cmd -msys" -
Update packages using pacman:
pacman -Syu
-
Exit the MSYS shell using Alt+F4 when you get a warning stating: "terminate MSYS2 without returning to shell and check for updates again/for example close your terminal window instead of calling exit"
-
Open the MSYS MinGW shell via the
MSYS2 MinGW 64-bit
shortcut or "C:\msys64\msys2_shell.cmd -mingw64" for 64-bit builds or via theMSYS2 MinGW 32-bit
shortcut or "C:\msys64\msys2_shell.cmd -mingw32" for 32-bit builds -
Update packages again using pacman:
pacman -Syu
-
Install dependencies:
To build for 64-bit Windows:
pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium mingw-w64-x86_64-hidapi git
To build for 32-bit Windows:
pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium mingw-w64-i686-hidapi git
-
Close and reopen the MSYS MinGW shell via
MSYS2 MinGW 64-bit
shortcut on 64-bit Windows orMSYS2 MinGW 32-bit
shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.
Cloning
-
To git clone, run:
git clone https://github.com/FuryCoin/Fury
Building
-
If you are on a 64-bit system, run:
cd Fury make release-static-win64
-
If you are on a 32-bit system, run:
cd Fury make release-static-win32
-
The resulting executables can be found in
build/release/bin
By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:
make release-static-linux-x86_64
builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processorsmake release-static-linux-i686
builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processorsmake release-static-linux-armv8
builds binaries on Linux portable across POSIX systems on armv8 processorsmake release-static-linux-armv7
builds binaries on Linux portable across POSIX systems on armv7 processorsmake release-static-linux-armv6
builds binaries on Linux portable across POSIX systems on armv6 processorsmake release-static-win64
builds binaries on 64-bit Windows portable across 64-bit Windows systemsmake release-static-win32
builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems
The build places the binary in bin/
sub-directory within the build directory
from which cmake was invoked (repository root by default). To run in
foreground:
./bin/furyd
To list all available options, run ./bin/furyd --help
. Options can be
specified either on the command line or in a configuration file passed by the
--config-file
argument. To specify an option in the configuration file, add
a line with the syntax argumentname=value
, where argumentname
is the name
of the argument without the leading dashes, for example log-level=1
.
To run in background:
./bin/furyd --log-file furyd.log --detach
To run as a systemd service, copy
furyd.service to /etc/systemd/system/
and
furyd.conf to /etc/
. The example
service assumes that the user fury
exists
and its home is the data directory specified in the example
config.
If you're on Mac, you may need to add the --max-concurrency 1
option to
monero-wallet-cli, and possibly monerod, if you get crashes refreshing.