forked from Nightmare-n/DepthAnyVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
193 lines (170 loc) · 6.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import logging
import os
import random
import shutil
import torch
from easydict import EasyDict
import numpy as np
from dav.pipelines import DAVPipeline
from dav.models import UNetSpatioTemporalRopeConditionModel
from diffusers import AutoencoderKLTemporalDecoder, FlowMatchEulerDiscreteScheduler
from dav.utils import img_utils
def seed_all(seed: int = 0):
"""
Set random seeds of all components.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Load models once to avoid reloading on every inference
def load_models(model_base, device):
vae = AutoencoderKLTemporalDecoder.from_pretrained(model_base, subfolder="vae")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
model_base, subfolder="scheduler"
)
unet = UNetSpatioTemporalRopeConditionModel.from_pretrained(
model_base, subfolder="unet"
)
unet_interp = UNetSpatioTemporalRopeConditionModel.from_pretrained(
model_base, subfolder="unet_interp"
)
pipe = DAVPipeline(
vae=vae,
unet=unet,
unet_interp=unet_interp,
scheduler=scheduler,
)
pipe = pipe.to(device)
return pipe
# Load models at startup
MODEL_BASE = "hhyangcs/depth-any-video"
DEVICE_TYPE = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE = torch.device(DEVICE_TYPE)
pipe = load_models(MODEL_BASE, DEVICE)
logging.info(f"Models loaded on {DEVICE}")
def depth_any_video(
file_path,
denoise_steps=3,
num_frames=32,
decode_chunk_size=16,
num_interp_frames=16,
num_overlap_frames=6,
max_resolution=1024,
):
"""
Perform depth estimation on the uploaded video/image.
Save the result in the output directory and return the path for display.
"""
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
# Replace spaces with underscores in the filename
sanitized_file_name = os.path.basename(file_path).replace(" ", "_")
local_input_path = os.path.join(output_dir, sanitized_file_name)
shutil.copy(file_path, local_input_path)
# Prepare configuration
cfg = EasyDict(
{
"model_base": MODEL_BASE,
"data_path": local_input_path,
"output_dir": output_dir,
"denoise_steps": denoise_steps,
"num_frames": num_frames,
"decode_chunk_size": decode_chunk_size,
"num_interp_frames": num_interp_frames,
"num_overlap_frames": num_overlap_frames,
"max_resolution": max_resolution,
"seed": random.randint(0, 10000),
}
)
seed_all(cfg.seed)
file_name = os.path.splitext(sanitized_file_name)[0]
is_video = cfg.data_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv"))
if is_video:
num_interp_frames = cfg.num_interp_frames
num_overlap_frames = cfg.num_overlap_frames
num_frames = cfg.num_frames
assert num_frames % 2 == 0, "num_frames should be even."
assert (
2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
), "Invalid frame overlap."
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (
num_frames // 2
)
image, fps = img_utils.read_video(cfg.data_path, max_frames=max_frames)
if image is None or len(image) == 0:
raise ValueError("No frames extracted from the video. Please check the input file.")
else:
image = img_utils.read_image(cfg.data_path)
if image is None or len(image) == 0:
raise ValueError("Failed to read the image. Please check the input file.")
image = img_utils.imresize_max(image, cfg.max_resolution)
image = img_utils.imcrop_multi(image)
image_tensor = np.ascontiguousarray(
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
)
image_tensor = torch.from_numpy(image_tensor).to(DEVICE)
with torch.no_grad(), torch.autocast(
device_type=DEVICE_TYPE, dtype=torch.float16
):
pipe_out = pipe(
image_tensor,
num_frames=cfg.num_frames,
num_overlap_frames=cfg.num_overlap_frames,
num_interp_frames=cfg.num_interp_frames,
decode_chunk_size=cfg.decode_chunk_size,
num_inference_steps=cfg.denoise_steps,
)
disparity = pipe_out.disparity
disparity_colored = pipe_out.disparity_colored
image = pipe_out.image
# (N, H, 2 * W, 3)
merged = np.concatenate(
[
image,
disparity_colored,
],
axis=2,
)
if is_video:
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.mp4") # Ensure .mp4 extension
img_utils.write_video(
output_path,
merged,
fps
)
return output_path
else:
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.png")
img_utils.write_image(
output_path,
merged[0],
)
return output_path
# Define Gradio interface
title = "Depth Any Video with Scalable Synthetic Data"
description = """
Upload a video or image to perform depth estimation using the Depth Any Video model.
Adjust the parameters as needed to control the inference process.
"""
iface = gr.Interface(
fn=depth_any_video,
inputs=[
gr.File(label="Upload Video/Image", type="filepath"), # Correct type usage
gr.Slider(1, 10, step=1, value=3, label="Denoise Steps"),
gr.Slider(16, 64, step=1, value=32, label="Number of Frames"),
gr.Slider(8, 32, step=1, value=16, label="Decode Chunk Size"),
gr.Slider(8, 32, step=1, value=16, label="Number of Interpolation Frames"),
gr.Slider(2, 10, step=1, value=6, label="Number of Overlap Frames"),
gr.Slider(512, 2048, step=32, value=1024, label="Maximum Resolution"),
],
outputs=gr.Video(label="Depth Enhanced Video/Image"),
title=title,
description=description,
examples=[["demos/arch_2.jpg"], ["demos/wooly_mammoth.mp4"]],
allow_flagging="never",
analytics_enabled=False,
)
if __name__ == "__main__":
iface.launch(share=True)