By Kui Jia, Shuai Li, Yuxin Wen, Tongliang Liu, and Dacheng Tao.
This repository contains the implementation used for the results in our paper (https://arxiv.org/abs/1905.05929). And this is a Pytorch version of Singlur Value Bounding method.
- A computer running on Linux
- NVIDIA GPU and NCCL
- Python version 2.7
- Pytorch 1.1
Use python main.py
to train a new model. Here is some example settings:
CUDA_VISIBLE_DEVICES=0 python main.py --dataset CIFAR10 --dataset_dir Dataset/CIFAR10 --nEpoch 160 -nGPU 1 -a ConvNet_WOBN -b 128 --lr_decay_method exp -lr 0.1 --save Exps/ConvNet20_BNSameVar_CIFAR10_Batch128_160E_lr01_Ori
CUDA_VISIBLE_DEVICES=0 python main.py --dataset CIFAR10 --dataset_dir Dataset/CIFAR10 --nEpoch 160 -nGPU 1 -a ConvNet_WOBN -b 128 --lr_decay_method exp -lr 0.1 --save Exps/ConvNet20_BNSameVar_CIFAR10_Batch128_160E_lr01_Stiefel -stiefel
CUDA_VISIBLE_DEVICES=0 python main.py --dataset CIFAR10 --dataset_dir Dataset/CIFAR10 --nEpoch 160 -nGPU 1 -a ConvNet_WOBN -b 128 --lr_decay_method exp -lr 0.1 --save Exps/ConvNet20_BNSameVar_CIFAR10_Batch128_160E_lr01_Soft --is_soft_regu --soft_lambda 0.1
CUDA_VISIBLE_DEVICES=0 python main.py --dataset CIFAR10 --dataset_dir Dataset/CIFAR10 --nEpoch 160 -nGPU 1 -a ConvNet_WOBN -b 128 --lr_decay_method exp -lr 0.1 --save Exps/ConvNet20_BNSameVar_CIFAR10_Batch128_160E_lr01_SRIP --is_SRIP --soft_lambda 0.1
CUDA_VISIBLE_DEVICES=0 python main.py --dataset CIFAR10 --dataset_dir Dataset/CIFAR10 --nEpoch 160 -nGPU 1 -a ConvNet_WOBN -b 128 --lr_decay_method exp -lr 0.1 --save Exps/ConvNet20_BNSameVar_CIFAR10_Batch128_160E_lr01_SVB -svb --svb_factor 0.05
If you use this method or this code in your paper, then please cite it:
@article{Jia_2019,
title={Orthogonal Deep Neural Networks},
ISSN={1939-3539},
url={http://dx.doi.org/10.1109/TPAMI.2019.2948352},
DOI={10.1109/tpami.2019.2948352},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Jia, Kui and Li, Shuai and Wen, Yuxin and Liu, Tongliang and Tao, Dacheng},
year={2019},
pages={1–1}
}