Skip to content

Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure (NeurIPS 2024) + Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count (arXiv preprint)

License

Notifications You must be signed in to change notification settings

HanseulJo/position-coupling

Repository files navigation

Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure

Github repository for:

  • Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chulhee Yun. "Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure." NeurIPS 2024. 🥳 arxiv.org/abs/2405.20671
  • Hanseul Cho, Jaeyoung Cha, Srinadh Bhojanapalli, and Chulhee Yun. "Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count." arXiv preprint. arxiv.org/abs/2410.15787

Citations

@inproceedings{cho2024position,
    title={Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure}, 
    author={Hanseul Cho and Jaeyoung Cha and Pranjal Awasthi and Srinadh Bhojanapalli and Anupam Gupta and Chulhee Yun},
    booktitle={Advances in Neural Information Processing Systems},
    volume={37},
    year={2024}
}

@article{cho2024arithmetic,
    title={Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count}, 
    author={Hanseul Cho and Jaeyoung Cha and Srinadh Bhojanapalli and Chulhee Yun},
    journal={arXiv preprint arXiv:2410.15787},
    year={2024},
}

Conda Environment Setting

Minimal environment to run our code base:

conda env create -f env.yaml

How to run our codes

If you want to train a single model with a single combination of random seeds, you may run run.py. Use --override to change the model/task/training configurations as you want.

python run.py \
    --override \
        use_wandb=True \
        group_name="<GroupName>" \
        exp_name="<ExperimentName>" \
        seed=999 \
        seed_data=42 \
        model="CustomT5DecoderOnly" \
        model.position_encoding_type="abs_learned" \
        model.num_layers=6 \
        model.num_heads=8 \
        model.save=True \
        task="addition_coupled" \
        task.max_position=102 \
        task.train.n_data=1000000 \
        training="default" \
        training.batch_size_train=1000 \
        training.batch_size_eval=100 \
        training.n_steps=50000 \
        training.optimizer.lr=0.0001

The result will be logged in the log/ directory. An example of the file structure of the logging directory is as follows:

log/
└── <GroupName>
    └── <ExperimentName>
        └── seed999_seedData42
            ├── cfg.json 
            ├── best_<MODEL_NAME>.pt
            ├── last_<MODEL_NAME>.pt
            ├── loss.pdf
            ├── instancewise_accuracy.pdf
            └── tokenwise_accuracy.pdf

If you have multiple number of devices (e.g., GPUs), we highly recommend you to run run_parallel.py to train the models with exactly the same configuration but with different combinations of random seeds.

python run_parallel.py \
    --use_wandb \
    --group_name "<GroupName>" \
    --exp_name "<ExperimentName>" \
    --seeds 0 1 2 3 \
    --seeds_data 0 1 \
    --devices 0 1 2 3 \
    --num_exp_per_device 2 \
    --override \
        model="CustomT5DecoderOnly" \
        model.position_encoding_type="abs_learned" \
        model.num_layers=6 \
        model.num_heads=8 \
        model.save=True \
        task="addition_coupled" \
        task.max_position=102 \
        task.train.n_data=1000000 \
        training="default" \
        training.batch_size_train=1000 \
        training.batch_size_eval=100 \
        training.n_steps=50000 \
        training.optimizer.lr=0.0001

For more examples of running codes, please check scripts/ directory.

Remarks

  • Our modeling codes (e.g., CustomT5DecoderOnly) are mostly based on the modification by this repository.
    • Our code basically supports various positional embedding (PE) schemes such as Rotary PE, T5's relative bias, Alibi, Absolute Fixed PE, etc. We also manually implemented FIRE. However, they are not tested except for NoPE (model.position_encoding_type="none") and Absolute Learned PE (model.position_encoding_type="abs_learned").
  • We use Hydra to maintain the configurations.

File Structure

.
├── attention_matrix.py     (only for `CustomT5DecoderOnly` model)
├── env.yaml                (Conda environment)
├── evaluate_model.py       (model evaluation)
├── run.py
├── run_parallel.py
├── configs/
│   ├── config.yaml
│   ├── model/
│   │   ├── CustomT5DecoderOnly.yaml
│   │   └── ... other model configs ...
│   ├── task/
│   │   ├── addition.yaml
│   │   ├── addition_coupled.yaml
│   │   ├── addition_index_hint.yaml
│   │   └── ... other task configs ...
│   └── training/
│       └── default.yaml
├── dataset/ (generated by running code)
├── log/     (generated by running code)
├── scripts/
│   ├── addition/
│   │   ├── run_<METHOD>.sh
│   │   ├── eval_<METHOD>.sh
│   │   └── attn_mtx.sh
│   ├── Nx2multiplication/
│   │   ├── run_<METHOD>.sh
│   │   └── eval_<METHOD>.sh
│   └── ... other folders of script files for other tasks ...
├── src/
│   ├── common/
│   │   ├── __init__.py
│   │   └── training_utils.py
│   ├── data/
│   │   ├── __init__.py
│   │   ├── arithmetic_dataset.py   (build dataset here)
│   │   ├── common.py               (Parent class `ArithmeticDataset`)
│   │   └── <TASK_NAME>.py          (addition, multiplication, ...)
│   ├── evaluate/
│   │   ├── __init__.py
│   │   └── accuracy.py
│   ├── model/
│   │   ├── __init__.py
│   │   ├── build_model.py
│   │   └── modeling/
│   │       ├── custom_gpt2.py
│   │       ├── custom_t5_decoder_only.py   (our main model)
│   │       └── positional_embeddings.py
│   ├── tokenization/
│   │   ├── __init__.py
│   │   └── tokenization.py
│   └── training/
│       ├── __init__.py
│       └── optimization.py
├── vis/  (make it yourself, for visualization)
└── wandb/  (automatically generated when using W&B)

About

Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure (NeurIPS 2024) + Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count (arXiv preprint)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published