Skip to content

Reproduce Results for ICCV2019 "Symmetric Cross Entropy for Robust Learning with Noisy Labels" https://arxiv.org/abs/1908.06112

Notifications You must be signed in to change notification settings

HanxunH/SCELoss-Reproduce

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCELoss-PyTorch

Official Repo: https://github.com/YisenWang/symmetric_cross_entropy_for_noisy_labels
Reproduce result for ICCV2019 paper "Symmetric Cross Entropy for Robust Learning with Noisy Labels"

Update

In the tensorflow version Official Repo, the model uses l2 weight decay of 0.01 on model.fc1, which will gives a better results. The code has been updated, now it should shows similar performance as in the paper.

How To Run

Arguments
  • --loss: 'SCE', 'CE'
  • --nr: 0.0 to 1.0 specify the nosie rate.
  • --dataset_type: 'cifar10' or 'cifar100'
  • --alpha: alpha for SCE
  • --beta: beta for SCE
  • --seed: random seed
  • --version: For experiment notes

Example for 0.4 Symmetric noise rate with SCE loss

# CIFAR10
$ python3 -u train.py  --loss         SCE               \
	                     --dataset_type cifar10           \
                       --l2_reg       1e-2              \
                       --seed         123               \
                       --alpha        0.1               \
                       --beta         1.0               \
                       --version      SCE0.4_CIFAR10    \
                       --nr           0.4

# CIFAR100
$ python3 -u train.py  --lr           0.01              \
                       --loss         SCE               \
                       --dataset_type cifar100          \
                       --l2_reg       1e-2              \
                       --seed         123               \
                       --alpha        6.0               \
                       --beta         1.0               \
                       --version      SCE0.4_CIFAR100   \
                       --nr           0.4

Results on CIFAR10

Result of best Epoch

Loss 0.0 0.2 0.4 0.6 0.8
CE 92.68 84.70 72.77 54.14 31.23
SCE 92.05 89.96 84.65 73.77 36.28

Results on CIFAR100

Loss 0.0 0.2 0.4 0.6 0.8
CE 73.84 61.70 42.88 20.47 4.88
SCE 73.57 62.31 46.50 24.00 12.51

About

Reproduce Results for ICCV2019 "Symmetric Cross Entropy for Robust Learning with Noisy Labels" https://arxiv.org/abs/1908.06112

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published