Skip to content

HarishSivakumar/cvlab-ai

 
 

Repository files navigation

🎥 Computer Vision Course Assignments

An engaging course repository for computer vision assignments, focusing on practical implementation of image processing, feature detection, object recognition, and deep learning techniques using Python and OpenCV.

Python OpenCV PyTorch License Maintenance

📖 Table of Contents

🌟 Core Components

📸 Image Processing Fundamentals

  • Basic Operations
    • Image manipulation
    • Color space conversions
    • Filtering techniques
    • Histogram analysis
  • Advanced Techniques
    • Edge detection
    • Morphological operations
    • Image enhancement
    • Frequency domain processing

🔍 Feature Detection & Recognition

  • Feature Extraction
    • SIFT/SURF implementations
    • Corner detection
    • Blob detection
    • Template matching
  • Pattern Recognition
    • Feature matching
    • Object detection
    • Face recognition
    • Scene classification

🧠 Deep Learning Integration

  • Neural Networks
    • CNN architectures
    • Transfer learning
    • Model training
    • Performance optimization
  • Modern Architectures
    • ResNet
    • YOLO
    • U-Net
    • Transformers

🔧 Technical Requirements

System Setup

  • Python Environment
    • Python 3.9+
    • pip or conda
    • Virtual environment
    • Git
  • Required Libraries
    • OpenCV 4.8+
    • NumPy 1.21+
    • PyTorch 2.0+
    • Matplotlib 3.5+

Dependencies

# requirements.txt
opencv-python>=4.8.0
numpy>=1.21.0
torch>=2.0.0
matplotlib>=3.5.0
scikit-image>=0.19.0
pillow>=9.0.0
jupyter>=1.0.0

🚀 Getting Started

Setup Instructions

# Clone the repository
git clone https://github.com/university/cv-course.git
cd cv-course

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Verify installation
python -c "import cv2; print(cv2.__version__)"

⭐ Grading

Evaluation Criteria

Component Weight Description
Implementation Code correctness & efficiency

| Results | Output quality & analysis |

🤝 Contributing

Guidelines

  1. Follow PEP 8 style guide
  2. Document all functions
  3. Include unit tests
  4. Maintain clean commit history

Last Updated: February 2025

About

Computer Vision Laboratory

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%