-
data matrix [X]
$\in \mathbb{R}^{m \times n}$ , m features, n samples, dtype=double; -
label matrix [Y]
$\in \mathbb{R}^{c \times n}$ , c class, dtype=double; -
dimension of subspace [d], e.g., 50, 100,...;
-
adjacency [W]
$\in \mathbb{R}^{n \times n}$ ; -
parameters [alpha],[beta],[eta],[gamma],[mu] dtype=double;
-
paramter [sig_mul] dtype=int;
-
#Iteration [max_Iter];
-
projection matrix [B_mat]
$\in \mathbb{R}^{m \times d}$ ; -
projection matrix [A_mat]
$\in \mathbb{R}^{c \times d}$ ; -
bias vector [h_vec]
$\in \mathbb{R}^c$ ; -
embedding in latent space [E]
$\in \mathbb{R}^{n \times d}$ ;
[B, A, h, E] = func_GOAL(X, Y, d, W, ...
alpha, beta, eta, gamma, mu, sig_mul, max_Iter);
low_dimentional_feature = B' * data_matrix;
To get the optimal hyperparameters, one should run parasch_ar_ga.m, parasch_coil100_ga.m, parasch_feret_ga.m, and parasch_orl_ga.m. In addition, one can search the hyperparameters in the way as parasch_coil100_beyas.m with Optimization Toolbox.
@ARTICLE{GOAL2024lu,
author={Lu, Haoquan and Lai, Zhihui and Zhang, Junhong and Yu, Zhuozhen and Wen, Jiajun},
journal={ IEEE Transactions on Artificial Intelligence },
title={{ GOAL: Generalized Jointly Sparse Linear Discriminant Regression for Feature Extraction }},
year={2024},
volume={5},
number={10},
ISSN={2691-4581},
pages={4959-4971},
doi={10.1109/TAI.2024.3412862},
url = {https://doi.ieeecomputersociety.org/10.1109/TAI.2024.3412862},
publisher={IEEE Computer Society},
address={Los Alamitos, CA, USA},
month=oct
}