Age of Information (AoI) optimization by joint UAV and worker nodes based on deep reinforcement learning algorithm D3QN
Note: A work for tentative manuscript title: A UAV-assisted Hybrid Optimization Frame-work for AoI Minimization
- Network model
- D3QN adaptation
- Energy model adaptation
- Basic bug fix
- AoI model adaptation
- Data persistence
- Train
- Trust model (direct trust and recommendation trust)
- Motion model of worker node (Not provide)
- Comparison with traditional strategies
- Energy consumption of data transmit
- More network scales ?
# Train by default
python3 ./main.py
# Train by adding parameters
python3 ./main.py -train
# Continuing training
python3 ./main.py -train -continue
# Test on
python3 ./main.py -test
# Train/test data analysis (unfinished)
python3 ./main.py -analysis -train
# Console log on
python3 ./main.py -console
# File log on (save at ./save/log by default)
python3 ./main.py -file_log
# Other parameters
python3 ./main.py -lr 0.001 # learning rate
python3 ./main.py -batch 256 # batch size
python3 ./main.py -gamma 0.75 # reward discount rate
python3 ./main.py -decay 0.99995 # epsilon decay
python3 ./main.py -sensor 1000 # sensor number
python3 ./main.py -worker 2 # worker number