Skip to content

IamJohnRain/GRNN-SR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GRNN-SR

Requirements

  • Python 3.5+
  • Tensorflow 0.12.1

Main files

  • reader.py (reader for loading and preprocessing data)
  • base.py (base model)
  • cell.py (cells of GRNN-SR and GRNN-SP)
  • model.py (training and testing of different models)
  • data (directory of dataset)

Outputs

  • checkpoints (saving of the model)
  • results (results of test)
    • results.txt
    • negation_results.txt
    • negation_results_probs.txt
    • intensity_results.txt
    • intensity_results_probs.txt

Usage

  • Run "$ python model.py" in command line or
  • Open the project in PyCharm and run the "model.py" file

Optional Arguments:

-h, --help            show this help message and exit
--unrolled_lstm [UNROLLED_LSTM]
                    use a statically unrolled LSTM instead of dynamic_rnn
--nounrolled_lstm
--learning_rate LEARNING_RATE
                    Learning rate of Adam optimizer (default: 0.001)
--hidden_dim HIDDEN_DIM
                    The dimension of hidden layer (default: 300)
--embed_dim EMBED_DIM
                    The dimentsion of word embeddings (default: 300)
--batch_size BATCH_SIZE
                    Batch size (default: 32)
--epochs EPOCHS       Number of training epochs (default: 2)
--dataset DATASET     The name of dataset from [SST, movie] (default: SST)
--encoder_type ENCODER_TYPE
                    The type of encoder from [GRU, LSTM, BiLSTM, GRNNSR,
                    GRNNSP] (defalut: GRU)
--checkpoint_dir CHECKPOINT_DIR
                    Directory name to save the checkpoints (default:
                    checkpoints)
--binary [BINARY]     True for binary classification and False for 5-class
                    classification (default: True)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages