-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
34,927 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torch.autograd import Variable | ||
|
||
|
||
class MyNetwork(nn.Module): | ||
|
||
def __init__(self): | ||
super(MyNetwork, self).__init__() | ||
|
||
self.conv1 = nn.Conv2d(1, 10, 3) | ||
self.pool1 = nn.MaxPool2d(2) | ||
|
||
self.conv2 = nn.Conv2d(10, 20, 3) | ||
self.pool2 = nn.MaxPool2d(2) | ||
|
||
self.conv3 = nn.Conv2d(20, 30, 3) | ||
self.dropout = nn.Dropout2d() | ||
|
||
self.fc1 = nn.Linear(30 * 3 * 3, 270) | ||
self.fc2 = nn.Linear(270, 26) | ||
|
||
self.softmax = nn.LogSoftmax(dim=1) | ||
|
||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = F.relu(x) | ||
x = self.pool1(x) | ||
|
||
x = self.conv2(x) | ||
x = F.relu(x) | ||
x = self.pool2(x) | ||
|
||
x = self.conv3(x) | ||
x = F.relu(x) | ||
x = self.dropout(x) | ||
|
||
x = x.view(-1, 30 * 3 * 3) | ||
|
||
x = self.fc1(x) | ||
x = F.relu(x) | ||
x = self.fc2(x) | ||
x = F.relu(x) | ||
x = self.softmax(x) | ||
|
||
return x | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
import io | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torch.autograd import Variable | ||
from torchvision import transforms | ||
|
||
import seaborn as sns | ||
import torchvision | ||
from torchsummary import summary | ||
from torch.utils.tensorboard import SummaryWriter | ||
|
||
|
||
|
||
def evaluate(predictions, labels): | ||
correct = 0 | ||
for p, l in zip(predictions, labels): | ||
if p == l: | ||
correct += 1 | ||
|
||
accuracy = correct / len(predictions) | ||
return accuracy | ||
|
||
|
||
|
||
def plot_to_image(figure): | ||
"""Converts the matplotlib plot specified by 'figure' to a tensor""" | ||
|
||
data = np.frombuffer(figure.canvas.tostring_rgb(), dtype=np.uint8) | ||
w, h = figure.canvas.get_width_height() | ||
data = data.reshape(h, w, 3) | ||
|
||
trans = transforms.ToPILImage() | ||
trans_tensor = transforms.ToTensor() | ||
return trans_tensor(trans(data)) | ||
|
||
def plot_grid(images, labels, predictions, M, N): | ||
# Create a figure to contain the plot. | ||
figure = plt.figure(figsize=(M,N)) | ||
for i in range(M*N): | ||
# Start next subplot. | ||
plt.subplot(M, N, i + 1, title=predictions[i] + ' (' + labels[i] + ')') | ||
#plt.setp(title, color=('g' if yp[i*N+j].max(dim=0)[1] == y[i*N+j] else 'r')) | ||
plt.xticks([]) | ||
plt.yticks([]) | ||
plt.grid(False) | ||
plt.imshow(images[i].reshape(28, 28), cmap=plt.cm.binary) | ||
plt.show() | ||
return figure | ||
|
||
def display_pic(pic, position): | ||
pixels = pic.reshape(28, 28) | ||
plt.subplot(position) | ||
sns.heatmap(data=pixels) | ||
|
||
def log_image_grid(images, labels, predictions, M, N, writer): | ||
plot = plot_grid(images, labels, predictions, M, N) | ||
to_show = plot_to_image(plot) | ||
writer.add_image('images', to_show, 0) | ||
|
||
|
||
|
||
def parse_data(path, device): | ||
raw_data = pd.read_csv(path, sep=",") | ||
|
||
labels = raw_data['label'] | ||
raw_data.drop('label', axis=1, inplace=True) | ||
|
||
data = raw_data.values | ||
labels = labels.values | ||
|
||
data = data.reshape(data.shape[0], 1, 28, 28) | ||
|
||
x = torch.cuda.FloatTensor(data).to(device) | ||
y = torch.cuda.LongTensor(labels).to(device) | ||
|
||
return x, y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import torch | ||
|
||
def fgsm(model, X, y, epsilon): | ||
""" Construct FGSM adversarial examples on the examples X""" | ||
delta = torch.zeros_like(X, requires_grad=True) | ||
loss = nn.CrossEntropyLoss()(model(X + delta), y) | ||
loss.backward() | ||
return epsilon * delta.grad.detach().sign() | ||
|
||
|
||
def pgd_linf(model, X, y, epsilon, alpha, num_iter): | ||
""" Construct PGD adversarial examples on the examples X""" | ||
delta = torch.zeros_like(X, requires_grad=True) | ||
for t in range(num_iter): | ||
loss = nn.CrossEntropyLoss()(model(X + delta), y) | ||
loss.backward() | ||
delta.data = (delta + alpha*delta.grad.detach().sign()).clamp(-epsilon,epsilon) | ||
delta.grad.zero_() | ||
return delta.detach() | ||
|
||
|
||
|
||
def test_attack(model, X, y, attack): | ||
delta = attack(model, X, y, 0.1) | ||
predictions = model(X + delta) | ||
|
||
#test visualisation | ||
M, N = 2, 6 | ||
images = test_x[0:M*N].detach().cpu() | ||
labels = [letters[test_y[i].detach().cpu()] for i in range(M*N)] | ||
predictions = [letters[torch.max(predictions.data, 1)[1][i].item()] for i in range(M*N)] | ||
|
||
visualisation.log_image_grid(images, labels, predictions, M, N, writer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import sys | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
import string | ||
import random | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torch.autograd import Variable | ||
|
||
import seaborn as sns | ||
import torchvision | ||
from torchsummary import summary | ||
from torch.utils.tensorboard import SummaryWriter | ||
|
||
import Utils.utils as utils | ||
import Utils.models as models | ||
|
||
def test(model_path, test_path): | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
writer = SummaryWriter() | ||
|
||
model = models.MyNetwork() | ||
model.load_state_dict(torch.load(model_path)) | ||
model = model.to(device) | ||
|
||
test_x, test_y = utils.parse_data(test_path, device) | ||
|
||
letters = string.ascii_uppercase | ||
predictions = model(test_x) | ||
model.eval() | ||
accuracy = utils.evaluate(torch.max(predictions.data, 1)[1], test_y) | ||
print("Accuracy: {}".format(accuracy)) | ||
|
||
#test visualisation | ||
M, N = 2, 6 | ||
#images = test_x[0:M*N].detach().cpu() | ||
|
||
perm = torch.randperm(test_x.size(0)) | ||
ids = perm[:M*N] | ||
|
||
images = test_x[ids].detach().cpu() | ||
|
||
labels = [letters[test_y[i].detach().cpu()] for i in ids] | ||
predictions = [letters[torch.max(predictions.data, 1)[1][i].item()] for i in ids] | ||
|
||
utils.log_image_grid(images, labels, predictions, M, N, writer) | ||
|
||
writer.close() | ||
|
||
if __name__ == "__main__": | ||
if len(sys.argv) != 3: | ||
print("\nWrong command syntax.\n") | ||
else: | ||
model_path = sys.argv[1] | ||
test_path = sys.argv[2] | ||
test(model_path, test_path) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
import sys | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torch.autograd import Variable | ||
|
||
import seaborn as sns | ||
import torchvision | ||
from torchsummary import summary | ||
from torch.utils.tensorboard import SummaryWriter | ||
|
||
import Utils.utils as utils | ||
import Utils.models as models | ||
|
||
def train_regular(model_path, train_path, num_epochs, batch_size): | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
writer = SummaryWriter() | ||
|
||
model = models.MyNetwork().to(device) | ||
train_x, train_y = utils.parse_data(train_path, device) | ||
|
||
optimizer = optim.SGD(model.parameters(), 0.001, momentum=0.7) | ||
loss_function = nn.CrossEntropyLoss() | ||
|
||
iteration = 0 | ||
for e in range(num_epochs): | ||
for i in range(0, train_x.shape[0], batch_size): | ||
train_x_mini = train_x[i:i + batch_size] | ||
train_y_mini = train_y[i:i + batch_size] | ||
|
||
optimizer.zero_grad() | ||
output = model(train_x_mini) | ||
loss = loss_function(output, train_y_mini) | ||
loss.backward() | ||
optimizer.step() | ||
predictions = torch.max(output.data, 1)[1] | ||
|
||
if i % 1000 == 0: | ||
writer.add_scalar('Loss/Train', loss.item(), iteration) | ||
writer.add_scalar('Accuracy/Train', utils.evaluate(predictions, train_y_mini)) | ||
iteration += 1 | ||
|
||
print('Epoch: {} - Loss: {:.6f}'.format(e + 1, loss.item())) | ||
|
||
writer.close() | ||
torch.save(model.state_dict(), model_path) | ||
summary(model, (1, 28, 28)) | ||
|
||
|
||
# python3 train_regular.py <model_path> <train_path> <num_epochs> <batch_size> | ||
if __name__ == "__main__": | ||
if len(sys.argv) != 5: | ||
print("\nWrong command syntax.\n") | ||
else: | ||
good = True | ||
try: | ||
model_path = sys.argv[1] | ||
train_path = sys.argv[2] | ||
num_epochs = int(sys.argv[3]) | ||
batch_size = int(sys.argv[4]) | ||
except ValueError: | ||
print("\nInvalid parameters.\n") | ||
good = False | ||
if good: | ||
train_regular(model_path, train_path, num_epochs, batch_size) |