A Trino client for the Python programming language. It supports Python>=3.7 and pypy.
Installation
$ pip install trino
Quick Start
Use the DBAPI interface to query Trino:
from trino.dbapi import connect
conn = connect(
host="<host>",
port=<port>,
user="<username>",
catalog="<catalog>",
schema="<schema>",
)
cur = conn.cursor()
cur.execute("SELECT * FROM system.runtime.nodes")
rows = cur.fetchall()
This will query the system.runtime.nodes
system tables that shows the nodes
in the Trino cluster.
The DBAPI implementation in trino.dbapi
provides methods to retrieve fewer
rows for example Cursor.fetchone()
or Cursor.fetchmany()
. By default
Cursor.fetchmany()
fetches one row. Please set
trino.dbapi.Cursor.arraysize
accordingly.
Prerequisite
- SQLAlchemy >= 1.3
- Trino server >= 351
Installation
$ pip install trino[sqlalchemy]
Usage
To connect to Trino using SQLAlchemy, use a connection string (URL) following this pattern:
trino://<username>:<password>@<host>:<port>/<catalog>/<schema>
NOTE: password
and schema
are optional
Examples:
from sqlalchemy import create_engine
from sqlalchemy.schema import Table, MetaData
from sqlalchemy.sql.expression import select, text
engine = create_engine('trino://user@localhost:8080/system')
connection = engine.connect()
rows = connection.execute(text("SELECT * FROM runtime.nodes")).fetchall()
# or using SQLAlchemy schema
nodes = Table(
'nodes',
MetaData(schema='runtime'),
autoload=True,
autoload_with=engine
)
rows = connection.execute(select(nodes)).fetchall()
In order to pass additional connection attributes use connect_args method. Attributes can be also passed in connection string.
from sqlalchemy import create_engine
engine = create_engine(
'trino://user@localhost:8080/system',
connect_args={
"session_properties": {'query_max_run_time': '1d'},
"client_tags": ["tag1", "tag2"],
"experimental_python_types": True,
}
)
# or in connection string
engine = create_engine(
'trino://user@localhost:8080/system?'
'session_properties={"query_max_run_time": "1d"}'
'&client_tags=["tag1", "tag2"]'
'&experimental_python_types=true',
)
The BasicAuthentication
class can be used to connect to a Trino cluster configured with
the Password file authentication type, LDAP authentication type or Salesforce authentication type:
-
DBAPI
from trino.dbapi import connect from trino.auth import BasicAuthentication conn = connect( user="<username>", auth=BasicAuthentication("<username>", "<password>"), http_scheme="https", ... )
-
SQLAlchemy
from sqlalchemy import create_engine engine = create_engine("trino://<username>:<password>@<host>:<port>/<catalog>") # or from trino.auth import BasicAuthentication engine = create_engine( "trino://<username>@<host>:<port>/<catalog>", connect_args={ "auth": BasicAuthentication("<username>", "<password>"), "http_scheme": "https", } )
The JWTAuthentication
class can be used to connect to a Trino cluster configured with
the JWT
authentication type:
-
DBAPI
from trino.dbapi import connect from trino.auth import JWTAuthentication conn = connect( user="<username>", auth=JWTAuthentication("<jwt_token>"), http_scheme="https", ... )
-
SQLAlchemy
from sqlalchemy import create_engine engine = create_engine("trino://<username>@<host>:<port>/<catalog>/<schema>?access_token=<jwt_token>") # or from trino.auth import JWTAuthentication engine = create_engine( "trino://<username>@<host>:<port>/<catalog>", connect_args={ "auth": JWTAuthentication("<jwt_token>"), "http_scheme": "https", } )
The OAuth2Authentication
class can be used to connect to a Trino cluster configured with
the OAuth2 authentication type.
A callback to handle the redirect url can be provided via param redirect_auth_url_handler
of the trino.auth.OAuth2Authentication
class. By default, it will try to launch a web browser (trino.auth.WebBrowserRedirectHandler
) to go through the authentication flow and output the redirect url to stdout (trino.auth.ConsoleRedirectHandler
). Multiple redirect handlers are combined using the trino.auth.CompositeRedirectHandler
class.
The OAuth2 token will be cached either per trino.auth.OAuth2Authentication
instance or, when keyring is installed, it will be cached within a secure backend (MacOS keychain, Windows credential locker, etc) under a key including host of the Trino connection. Keyring can be installed using pip install 'trino[external-authentication-token-cache]'
.
-
DBAPI
from trino.dbapi import connect from trino.auth import OAuth2Authentication conn = connect( user="<username>", auth=OAuth2Authentication(), http_scheme="https", ... )
-
SQLAlchemy
from sqlalchemy import create_engine from trino.auth import OAuth2Authentication engine = create_engine( "trino://<username>@<host>:<port>/<catalog>", connect_args={ "auth": OAuth2Authentication(), "http_scheme": "https", } )
CertificateAuthentication
class can be used to connect to Trino cluster configured with certificate based authentication. CertificateAuthentication
requires paths to a valid client certificate and private key.
-
DBAPI
from trino.dbapi import connect from trino.auth import CertificateAuthentication conn = connect( user="<username>", auth=CertificateAuthentication("/path/to/cert.pem", "/path/to/key.pem"), http_scheme="https", ... )
-
SQLAlchemy
from sqlalchemy import create_engine from trino.auth import CertificateAuthentication engine = create_engine("trino://<username>@<host>:<port>/<catalog>/<schema>?cert=<cert>&key=<key>") # or engine = create_engine( "trino://<username>@<host>:<port>/<catalog>", connect_args={ "auth": CertificateAuthentication("/path/to/cert.pem", "/path/to/key.pem"), "http_scheme": "https", } )
The KerberosAuthentication
class can be used to connect to a Trino cluster configured with
the Kerberos
authentication type:
-
DBAPI
from trino.dbapi import connect from trino.auth import KerberosAuthentication conn = connect( user="<username>", auth=KerberosAuthentication(...), http_scheme="https", ... )
-
SQLAlchemy
from sqlalchemy import create_engine from trino.auth import KerberosAuthentication engine = create_engine( "trino://<username>@<host>:<port>/<catalog>", connect_args={ "auth": KerberosAuthentication(...), "http_scheme": "https", } )
In the case of user who submit the query is not the same as user who authenticate to Trino server (e.g in Superset),
you can set username
to different from principal_id
. Note that principal_id
is extracted from auth
,
for example username
in BasicAuthentication, sub
in JWT token or service-name
in KerberosAuthentication and
please make sure that principal_id
has permission to impersonate username
.
Send extra credentials
:
import trino
conn = trino.dbapi.connect(
host='localhost',
port=443,
user='the-user',
extra_credential=[('a.username', 'bar'), ('a.password', 'foo')],
)
cur = conn.cursor()
cur.execute('SELECT * FROM system.runtime.nodes')
rows = cur.fetchall()
In order to disable SSL verification, set the verify
parameter to False
.
from trino.dbapi import connect
from trino.auth import BasicAuthentication
conn = connect(
user="<username>",
auth=BasicAuthentication("<username>", "<password>"),
http_scheme="https",
verify=False
)
To use self-signed certificates, specify a path to the certificate in verify
parameter.
More details can be found in the Python requests library documentation.
from trino.dbapi import connect
from trino.auth import BasicAuthentication
conn = connect(
user="<username>",
auth=BasicAuthentication("<username>", "<password>"),
http_scheme="https",
verify="/path/to/cert.crt"
)
The client runs by default in autocommit mode. To enable transactions, set
isolation_level to a value different than IsolationLevel.AUTOCOMMIT
:
from trino.dbapi import connect
from trino.transaction import IsolationLevel
with connect(
isolation_level=IsolationLevel.REPEATABLE_READ,
...
) as conn:
cur = conn.cursor()
cur.execute('INSERT INTO sometable VALUES (1, 2, 3)')
cur.fetchall()
cur.execute('INSERT INTO sometable VALUES (4, 5, 6)')
cur.fetchall()
The transaction is created when the first SQL statement is executed.
trino.dbapi.Connection.commit()
will be automatically called when the code
exits the with context and the queries succeed, otherwise
trino.dbapi.Connection.rollback()
will be called.
If you enable the flag experimental_python_types
, the client will convert the results of the query to the
corresponding Python types. For example, if the query returns a DECIMAL
column, the result will be a Decimal
object.
Limitations of the Python types are described in the
Python types documentation. These limitations will generate an
exception trino.exceptions.DataError
if the query returns a value that cannot be converted to the corresponding Python
type.
import trino
import pytz
from datetime import datetime
conn = trino.dbapi.connect(
experimental_python_types=True,
...
)
cur = conn.cursor()
params = datetime(2020, 1, 1, 16, 43, 22, 320000, tzinfo=pytz.timezone('America/Los_Angeles'))
cur.execute("SELECT ?", params=(params,))
rows = cur.fetchall()
assert rows[0][0] == params
assert cur.description[0][1] == "timestamp with time zone"
Start by forking the repository and then modify the code in your fork.
Clone the repository and go inside the code directory. Then you can get the
version with ./setup.py --version
.
We recommend that you use Python3's venv
for development:
$ python3 -m venv .venv
$ . .venv/bin/activate
$ pip install .
For development purpose, pip can reference the code you are modifying in a virtual env:
$ pip install -e .
# To additionally install all dependencies for development run below command
$ pip install -e '.[tests]'
That way, you do not need to run pip install
again to make your changes
applied to the virtual env.
When the code is ready, submit a Pull Request.
- For Python code, adhere to PEP 8.
- Prefer code that is readable over one that is "clever".
- When writing a Git commit message, follow these guidelines.
trino-python-client
uses pytest for its tests. To run
only unit tests, type:
$ pytest tests/unit
Then you can pass options like --pdb
or anything supported by pytest --help
.
To run the tests with different versions of Python in managed virtual envs,
use tox
(see the configuration in tox.ini
):
$ tox
To run integration tests:
$ pytest tests/integration
They pull a Docker image and then run a container with a Trino server:
- the image is named
trinodb/trino:${TRINO_VERSION}
- the container is named
trino-python-client-tests-{uuid4()[:7]}
- Set up your development environment.
- Check the local workspace is up to date and has no uncommitted changes
git fetch -a && git status
- Change version in
trino/__init__.py
to a new version, e.g.0.123.0
. - Commit
git commit -a -m "Bump version to 0.123.0"
- Create an annotated tag
git tag -m "" 0.123.0
- Create release package and upload it to PyPI
. .venv/bin/activate && pip install twine && rm -rf dist/ && ./setup.py sdist bdist_wheel && twine upload dist/* && open https://pypi.org/project/trino/ && echo "Released!"
- Push the branch and the tag
git push upstream master 0.123.0
- Send release announcement.
Feel free to create an issue as it make your request visible to other users and contributors.
If an interactive discussion would be better or if you just want to hangout and chat about the Trino Python client, you can join us on the #python-client channel on Trino Slack.