-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdroid_net.py
222 lines (161 loc) · 6.95 KB
/
droid_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from .modules.extractor import BasicEncoder
from .modules.corr import CorrBlock
from .modules.gru import ConvGRU
from .modules.clipping import GradientClip
from lietorch import SE3
from .geom.ba import BA
from .geom import projective_ops as pops
from .geom.graph_utils import graph_to_edge_list, keyframe_indicies
from torch_scatter import scatter_mean
def cvx_upsample(data, mask):
""" upsample pixel-wise transformation field """
batch, ht, wd, dim = data.shape
data = data.permute(0, 3, 1, 2)
mask = mask.view(batch, 1, 9, 8, 8, ht, wd)
mask = torch.softmax(mask, dim=2)
up_data = F.unfold(data, [3,3], padding=1)
up_data = up_data.view(batch, dim, 9, 1, 1, ht, wd)
up_data = torch.sum(mask * up_data, dim=2)
up_data = up_data.permute(0, 4, 2, 5, 3, 1)
up_data = up_data.reshape(batch, 8*ht, 8*wd, dim)
return up_data
def upsample_disp(disp, mask):
batch, num, ht, wd = disp.shape
disp = disp.view(batch*num, ht, wd, 1)
mask = mask.view(batch*num, -1, ht, wd)
return cvx_upsample(disp, mask).view(batch, num, 8*ht, 8*wd)
class GraphAgg(nn.Module):
def __init__(self):
super(GraphAgg, self).__init__()
self.conv1 = nn.Conv2d(128, 128, 3, padding=1)
self.conv2 = nn.Conv2d(128, 128, 3, padding=1)
self.relu = nn.ReLU(inplace=True)
self.eta = nn.Sequential(
nn.Conv2d(128, 1, 3, padding=1),
GradientClip(),
nn.Softplus())
self.upmask = nn.Sequential(
nn.Conv2d(128, 8*8*9, 1, padding=0))
def forward(self, net, ii):
batch, num, ch, ht, wd = net.shape
net = net.view(batch*num, ch, ht, wd)
_, ix = torch.unique(ii, return_inverse=True)
net = self.relu(self.conv1(net))
net = net.view(batch, num, 128, ht, wd)
net = scatter_mean(net, ix, dim=1)
net = net.view(-1, 128, ht, wd)
net = self.relu(self.conv2(net))
eta = self.eta(net).view(batch, -1, ht, wd)
upmask = self.upmask(net).view(batch, -1, 8*8*9, ht, wd)
return .01 * eta, upmask
class UpdateModule(nn.Module):
def __init__(self):
super(UpdateModule, self).__init__()
cor_planes = 4 * (2*3 + 1)**2
self.corr_encoder = nn.Sequential(
nn.Conv2d(cor_planes, 128, 1, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(inplace=True))
self.flow_encoder = nn.Sequential(
nn.Conv2d(4, 128, 7, padding=3),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, 3, padding=1),
nn.ReLU(inplace=True))
self.weight = nn.Sequential(
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 2, 3, padding=1),
GradientClip(),
nn.Sigmoid())
self.delta = nn.Sequential(
nn.Conv2d(128, 128, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 2, 3, padding=1),
GradientClip())
self.gru = ConvGRU(128, 128+128+64)
self.agg = GraphAgg()
def forward(self, net, inp, corr, flow=None, ii=None, jj=None):
""" RaftSLAM update operator """
batch, num, ch, ht, wd = net.shape
if flow is None:
flow = torch.zeros(batch, num, 4, ht, wd, device=net.device)
output_dim = (batch, num, -1, ht, wd)
net = net.view(batch*num, -1, ht, wd)
inp = inp.view(batch*num, -1, ht, wd)
corr = corr.view(batch*num, -1, ht, wd)
flow = flow.view(batch*num, -1, ht, wd)
corr = self.corr_encoder(corr)
flow = self.flow_encoder(flow)
net = self.gru(net, inp, corr, flow)
### update variables ###
delta = self.delta(net).view(*output_dim)
weight = self.weight(net).view(*output_dim)
delta = delta.permute(0,1,3,4,2)[...,:2].contiguous()
weight = weight.permute(0,1,3,4,2)[...,:2].contiguous()
net = net.view(*output_dim)
if ii is not None:
eta, upmask = self.agg(net, ii.to(net.device))
return net, delta, weight, eta, upmask
else:
return net, delta, weight
class DroidNet(nn.Module):
def __init__(self):
super(DroidNet, self).__init__()
self.fnet = BasicEncoder(output_dim=128, norm_fn='instance')
self.cnet = BasicEncoder(output_dim=256, norm_fn='none')
self.update = UpdateModule()
def extract_features(self, images):
""" run feeature extraction networks """
# normalize images
images = images[:, :, [2,1,0]] / 255.0
mean = torch.as_tensor([0.485, 0.456, 0.406], device=images.device)
std = torch.as_tensor([0.229, 0.224, 0.225], device=images.device)
images = images.sub_(mean[:, None, None]).div_(std[:, None, None])
fmaps = self.fnet(images)
net = self.cnet(images)
net, inp = net.split([128,128], dim=2)
net = torch.tanh(net)
inp = torch.relu(inp)
return fmaps, net, inp
def forward(self, Gs, images, disps, intrinsics, graph=None, num_steps=12, fixedp=2):
""" Estimates SE3 or Sim3 between pair of frames """
u = keyframe_indicies(graph)
ii, jj, kk = graph_to_edge_list(graph)
ii = ii.to(device=images.device, dtype=torch.long)
jj = jj.to(device=images.device, dtype=torch.long)
fmaps, net, inp = self.extract_features(images)
net, inp = net[:,ii], inp[:,ii]
corr_fn = CorrBlock(fmaps[:,ii], fmaps[:,jj], num_levels=4, radius=3)
ht, wd = images.shape[-2:]
coords0 = pops.coords_grid(ht//8, wd//8, device=images.device)
coords1, _ = pops.projective_transform(Gs, disps, intrinsics, ii, jj)
target = coords1.clone()
Gs_list, disp_list, residual_list = [], [], []
for step in range(num_steps):
Gs = Gs.detach()
disps = disps.detach()
coords1 = coords1.detach()
target = target.detach()
# extract motion features
corr = corr_fn(coords1)
resd = target - coords1
flow = coords1 - coords0
motion = torch.cat([flow, resd], dim=-1)
motion = motion.permute(0,1,4,2,3).clamp(-64.0, 64.0)
net, delta, weight, eta, upmask = \
self.update(net, inp, corr, motion, ii, jj)
target = coords1 + delta
for i in range(2):
Gs, disps = BA(target, weight, eta, Gs, disps, intrinsics, ii, jj, fixedp=2)
coords1, valid_mask = pops.projective_transform(Gs, disps, intrinsics, ii, jj)
residual = (target - coords1)
Gs_list.append(Gs)
disp_list.append(upsample_disp(disps, upmask))
residual_list.append(valid_mask * residual)
return Gs_list, disp_list, residual_list