This repository aims to train an autoEncoder-based BigGAN model for image inpainting. Specifically, the autoencoder-based BigGAN model tries to fill a missing part of an image using visual common sense.
First, install PyTorch meeting your environment (at least 1.7, recommmended 1.10):
pip3 install torch==1.10.0+cu111 torchvision==0.11.1+cu111 torchaudio==0.10.0+cu111 -f https://download.pytorch.org/whl/cu111/torch_stable.html
Then, use the following command to install the rest of the libraries:
pip3 install tqdm ninja h5py kornia matplotlib pandas sklearn scipy seaborn wandb PyYaml click requests pyspng imageio-ffmpeg prdc
Before starting, users should login wandb using their personal API key.
wandb login PERSONAL_API_KEY
- Train (
-t
) and evaluate (-e
) the BigGAN-style autoencoder model using GPU0,1,2,3
.
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -cfg "./src/configs/VisualGenome/BigGAN.yaml" -data DATA_PATH -save SAVE_PATH
Try python3 src/main.py
to see available options.
make the folder structure of the dataset as follows:
data
└── VisualGenome
├── train
├── source
│ ├── train0.png
│ ├── train1.png
│ └── ...
└── target
├── train0.png
├── train1.png
└── ...
This Library is an open-source library under the MIT license (MIT). However, portions of the library are avaiiable under distinct license terms: Synchronized batch normalization is licensed under MIT license, HDF5 generator is licensed under MIT license, and differentiable SimCLR-style augmentations is licensed under MIT license.