Skip to content
forked from ibalazevic/TuckER

TuckER: Tensor Factorization for Knowledge Graph Completion

Notifications You must be signed in to change notification settings

Jmallins/TuckER

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TuckER: Tensor Factorization for Knowledge Graph Completion

This codebase contains PyTorch implementation of the paper:

TuckER: Tensor Factorization for Knowledge Graph Completion. Ivana Balažević, Carl Allen, and Timothy M. Hospedales. arXiv preprint arXiv:1901.09590, 2019. [Paper]

Link Prediction Results

Dataset MRR Hits@10 Hits@3 Hits@1
FB15k 0.795 0.892 0.833 0.741
WN18 0.953 0.958 0.955 0.949
FB15k-237 0.358 0.544 0.394 0.266
WN18RR 0.470 0.526 0.482 0.443

Running a model

To run the model, execute the following command:

 CUDA_VISIBLE_DEVICES=0 python main.py --dataset FB15k-237 --num_iterations 500 --batch_size 128
                                       --lr 0.0005 --dr 1.0 --edim 200 --rdim 200 --input_dropout 0.3 
                                       --hidden_dropout1 0.4 --hidden_dropout2 0.5 --label_smoothing 0.1

Available datasets are:

FB15k-237
WN18RR
FB15k
WN18

Requirements

The codebase is implemented in Python 3.6.6. Required packages are:

numpy      1.14.5
pytorch    0.4.0

Citation

If you found this codebase useful, please cite:

@article{balazevic2019tucker,
title={TuckER: Tensor Factorization for Knowledge Graph Completion},
author={Bala\v{z}evi\'c, Ivana and Allen, Carl and Hospedales, Timothy M},
journal={arXiv preprint arXiv:1901.09590},
year={2019}
}

About

TuckER: Tensor Factorization for Knowledge Graph Completion

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%