This is the official implementation of the paper Learning Robust Image-Based Rendering on Sparse Scene Geometry via Depth Completion, CVPR 2022.
We use NVIDIA RTX 3090, cuda 11.1 and the follwing python packages:
- pytorch=1.7.0+cu110
- torchvision=0.8.2+cu110
- visdom=0.1.8.9
- tqdm
We borrows forward warping from Forward warping and deformable convolution from DCNv2. Please follow their instruction to build this extension.
You can download our proposed dataset Surround from here.
We also post-process two public dataset Tanks_and_Temples and Free View Synthesis, you can download them form Tanks_and_Temples(baidudisk, code:iigy), Free_View_Synthesis(baidudisk, code:1nuh).
You can download our pretrained dcnet and SIBRNet model from dcnet, SIBRNet. Pleace them in 'output'.
We use visdom to visualize the training process, please make sure it is connected. You can use 'python -m visdom.server --port xxxx' to build connection and open the visual interface in browser. Model will be saved in './output'
Please train the depth completion net firstly.
python train_dc.py --prefix DCNet --visdom_port xxxx
Train the full SIBRNet with:
python train_full.py --prefix SIBRNet --visdom_port xxxx
Result will be saved in './Result'
python evaluation.py --prefix SIBRNet --batch_size 1 --visualize
You can use metrics_evaluate.py to calculate PSNR, SSIM, LPIPS with:
python metrcis_evaluate.py --dataset TanksSparse --sparse 4 --result_name 'Your result saved path'
If you find this code useful, please cite our paper:
@inproceedings{sun2022learning,
title={Learning Robust Image-Based Rendering on Sparse Scene Geometry via Depth Completion},
author={Sun, Yuqi and Zhou, Shili and Cheng, Ri and Tan, Weimin and Yan, Bo and Fu, Lang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7813--7823},
year={2022}
}