{spdgp}
is an R port of the pysal
module
dgp
within
spreg
library.
spdgp
is designed around the
spdep
package’s listw
object
for representing spatial weights matrices.
Use spdgp
to generate data for the following models:
- OLS:
sim_ols()
- Spatial Error Model (SEM):
sim_sem()
- Spatial Lag Model (SAR):
sim_sar()
- Spatially Lagged X Model (SLX):
sim_slx()
- Spatial Lagged X Error Model (SLX Error):
sim_slx_error()
- Spatial Autoregressive Model with Autoregressive Errors (SARAR / SAC /
“Combo” model):
sim_sarar()
- Spatial Durbin Model:
sim_durbin()
- General Nested Model (GNM):
sim_gns()
- Matrix Exponential Spatial Lag Model (MESS):
sim_mess()
spdgp
can be installed from github using:
if (!requireNamespace("pak")) {
install.packages("pak")
}
pak::pak("josiahparry/spdgp")
We first need to create a spatial weights matrix to simulate based off of:
library(spdgp)
n <- 50
listw <- sim_grid_listw(10, 5)
Next we can simulate our error term, x from our betas.
# simulate error
u <- make_error(n, method = "normal")
# simulate x values based on uniform distribution
x <- make_x(n, method = "uniform")
# create x's according to an intercept and beta value
x_beta <- make_xb(x, c(1, 5))
Next, we’ll simulate the y and specify the autoregrssive parameter
# simulate y from error and the x_beta
y <- sim_sar(u, x_beta, listw, rho = 0.5)
Fit an SAR model using simulated data.
library(spatialreg)
sar_mod <- lagsarlm(y ~ x$x_1, listw = listw)
summary(sar_mod)
#>
#> Call:lagsarlm(formula = y ~ x$x_1, listw = listw)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.100635 -0.377549 0.042234 0.703459 2.810884
#>
#> Type: lag
#> Coefficients: (asymptotic standard errors)
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.49641 0.97505 0.5091 0.6107
#> x$x_1 4.98587 0.19082 26.1281 <2e-16
#>
#> Rho: 0.52947, LR test value: 54.755, p-value: 1.3656e-13
#> Asymptotic standard error: 0.050408
#> z-value: 10.504, p-value: < 2.22e-16
#> Wald statistic: 110.33, p-value: < 2.22e-16
#>
#> Log likelihood: -83.83562 for lag model
#> ML residual variance (sigma squared): 1.5825, (sigma: 1.258)
#> Number of observations: 50
#> Number of parameters estimated: 4
#> AIC: 175.67, (AIC for lm: 228.43)
#> LM test for residual autocorrelation
#> test value: 1.8893, p-value: 0.16928
In the model we can see that the estimate of rho
is quite close to the
specified value of 0.5
.