forked from hsouri/Sleeper-Agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
262 lines (212 loc) · 10.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""Various utilities."""
import os
import csv
import socket
import datetime
from collections import defaultdict
import torch
import random
import numpy as np
from .consts import NON_BLOCKING
def system_startup(args=None, defs=None):
"""Decide and print GPU / CPU / hostname info."""
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
setup = dict(device=device, dtype=torch.float, non_blocking=NON_BLOCKING)
print('Currently evaluating -------------------------------:')
print(datetime.datetime.now().strftime("%A, %d. %B %Y %I:%M%p"))
if args is not None:
print(args)
if defs is not None:
print(repr(defs))
print(f'CPUs: {torch.get_num_threads()}, GPUs: {torch.cuda.device_count()} on {socket.gethostname()}.')
if torch.cuda.is_available():
print(f'GPU : {torch.cuda.get_device_name(device=device)}')
return setup
def average_dicts(running_stats):
"""Average entries in a list of dictionaries."""
average_stats = defaultdict(list)
for stat in running_stats[0]:
if isinstance(running_stats[0][stat], list):
for i, _ in enumerate(running_stats[0][stat]):
average_stats[stat].append(np.mean([stat_dict[stat][i] for stat_dict in running_stats]))
else:
average_stats[stat] = np.mean([stat_dict[stat] for stat_dict in running_stats])
return average_stats
"""Misc."""
def _gradient_matching(poison_grad, source_grad):
"""Compute the blind passenger loss term."""
matching = 0
poison_norm = 0
source_norm = 0
for pgrad, tgrad in zip(poison_grad, source_grad):
matching -= (tgrad * pgrad).sum()
poison_norm += pgrad.pow(2).sum()
source_norm += tgrad.pow(2).sum()
matching = matching / poison_norm.sqrt() / source_norm.sqrt()
return matching
def bypass_last_layer(model):
"""Hacky way of separating features and classification head for many models.
Patch this function if problems appear.
"""
layer_cake = list(model.children())
last_layer = layer_cake[-1]
headless_model = torch.nn.Sequential(*(layer_cake[:-1]), torch.nn.Flatten()) # this works most of the time all of the time :<
return headless_model, last_layer
def cw_loss(outputs, target_classes, clamp=-100):
"""Carlini-Wagner loss for brewing"""
top_logits, _ = torch.max(outputs, 1)
target_logits = torch.stack([outputs[i, target_classes[i]] for i in range(outputs.shape[0])])
difference = torch.clamp(top_logits - target_logits, min=clamp)
return torch.mean(difference)
def _label_to_onehot(source, num_classes=100):
source = torch.unsqueeze(source, 1)
onehot_source = torch.zeros(source.shape[0], num_classes, device=source.device)
onehot_source.scatter_(1, source, 1)
return onehot_source
def cw_loss2(outputs, target_classes, confidence=0, clamp=-100):
"""CW. This is assert-level equivalent."""
one_hot_labels = _label_to_onehot(target_classes, num_classes=outputs.shape[1])
source_logit = (outputs * one_hot_labels).sum(dim=1)
second_logit, _ = (outputs - outputs * one_hot_labels).max(dim=1)
cw_indiv = torch.clamp(second_logit - source_logit + confidence, min=clamp)
return cw_indiv.mean()
def save_to_table(out_dir, name, dryrun, **kwargs):
"""Save keys to .csv files."""
# Check for file
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
fname = os.path.join(out_dir, f'table_{name}.csv')
fieldnames = list(kwargs.keys())
# Read or write header
try:
with open(fname, 'r') as f:
reader = csv.reader(f, delimiter='\t')
header = [line for line in reader][0]
except Exception as e:
if not dryrun:
print('Creating a new .csv table...')
with open(fname, 'w') as f:
writer = csv.DictWriter(f, delimiter='\t', fieldnames=fieldnames)
writer.writeheader()
else:
print(f'Would create new .csv table {fname}.')
if not dryrun:
# Add row for this experiment
with open(fname, 'a') as f:
writer = csv.DictWriter(f, delimiter='\t', fieldnames=fieldnames)
writer.writerow(kwargs)
print('\nResults saved to ' + fname + '.')
else:
print(f'Would save results to {fname}.')
def record_results(kettle, brewed_loss, results, args, defs, modelkey, extra_stats=dict()):
"""Save output to a csv table."""
class_names = kettle.trainset.classes
stats_clean, stats_rerun, stats_results = results
def _maybe(stats, param, mean=False):
"""Retrieve stat if it was recorded. Return empty string otherwise."""
if stats is not None:
if len(stats[param]) > 0:
if mean:
return np.mean(stats[param])
else:
return stats[param][-1]
return ''
args.name = f'{args.budget}_{args.eps}_{args.patch_size}_{args.attackiter}_{args.sources_train}_{args.retrain_scenario}_{args.scenario}_{args.load_feature_repr}_{args.name}'
save_to_table(args.table_path,
f'{"_".join(args.net)}_{args.threatmodel}_{args.name}', args.dryrun,
budget=args.budget, eps=args.eps,
source=class_names[kettle.poison_setup['source_class']] if kettle.poison_setup['source_class'] is not None else 'Several',
target=class_names[kettle.poison_setup['target_class'][0]],
poison=class_names[kettle.poison_setup['poison_class']] if kettle.poison_setup['poison_class'] is not None else 'All',
patch=args.load_patch,
craft_scenario=args.retrain_scenario,
valid_scenario=args.scenario,
epochs_train=args.max_epoch,
epochs_retrain=args.retrain_max_epoch,
epochs_val=args.val_max_epoch,
patch_size=args.patch_size,
nruns=args.vruns,
ensemble=args.ensemble,
sources_train=args.sources_train,
sources_test=args.sources,
source_loss_reinit=_maybe(stats_results, 'source_losses'),
attack_success_rate=_maybe(stats_results, 'source_accs'),
load_feature_repr=args.load_feature_repr,
source_loss_rerun=_maybe(stats_rerun, 'source_losses'),
source_acc_rerun=_maybe(stats_rerun, 'source_accs'),
brewed_loss=brewed_loss,
optim=args.attackoptim, iter=args.attackiter, loss=args.loss,
tau=args.tau, centreg=args.centreg,
normreg=args.normreg, repel=args.repel, init=args.init,
pbatch=args.pbatch,
ens=args.ensemble, vruns=args.vruns, pshuffle=args.pshuffle,
paugment=args.paugment, step=args.step, full_data=args.full_data,
stagger=args.stagger, maxepoch=args.max_epoch, nadapt=args.nadapt,
data_aug=defs.augmentations, epochs=defs.epochs, lr=defs.lr,
poison_loss=args.source_criterion,
restarts=args.restarts,
step_decay=args.scheduling,
ablation=args.ablation,
benchmark_idx=args.benchmark_idx,
source_mloss_reinit=_maybe(stats_results, 'source_losses', mean=True),
source_macc_reinit=_maybe(stats_results, 'source_accs', mean=True),
source_mloss_rerun=_maybe(stats_rerun, 'source_losses', mean=True),
source_macc_rerun=_maybe(stats_rerun, 'source_accs', mean=True),
triggered_source_loss_reinit=_maybe(stats_results, 'source_losses_clean'),
triggered_source_acc_reinit=_maybe(stats_results, 'source_accs_clean'),
triggered_source_loss_rerun=_maybe(stats_rerun, 'source_losses_clean'),
triggered_source_acc_rerun=_maybe(stats_rerun, 'source_accs_clean'),
**extra_stats,
train_loss_reinit=_maybe(stats_results, 'train_losses'),
val_loss_reinit=_maybe(stats_results, 'valid_losses'),
train_acc_reinit=_maybe(stats_results, 'train_accs'),
val_acc_reinit=_maybe(stats_results, 'valid_accs'),
train_loss_rerun=_maybe(stats_rerun, 'train_losses'),
val_loss_rerun=_maybe(stats_rerun, 'valid_losses'),
train_acc_rerun=_maybe(stats_rerun, 'train_accs'),
val_acc_rerun=_maybe(stats_rerun, 'valid_accs'),
train_loss_clean=_maybe(stats_clean, 'train_losses'),
val_loss_clean=_maybe(stats_clean, 'valid_losses'),
train_acc_clean=_maybe(stats_clean, 'train_accs'),
val_acc_clean=_maybe(stats_clean, 'valid_accs'),
poisonkey=kettle.init_seed,
modelkey=modelkey,
net=",".join(args.net),
vnet=",".join(args.vnet) if args.vnet is not None else '',
**{f'ARG_{key}': val for key, val in args.__dict__.items()},
val_acc_target_clean=_maybe(stats_clean, 'valid_accs_target'),
val_acc_source_clean=_maybe(stats_clean, 'valid_accs_source'),
val_acc_target_rerun=_maybe(stats_rerun, 'valid_accs_target'),
val_acc_source_rerun=_maybe(stats_rerun, 'valid_accs_source'),
val_acc_target_reinit=_maybe(stats_results, 'valid_accs_target'),
val_acc_source_reinit=_maybe(stats_results, 'valid_accs_source'),
)
def automl_bridge(kettle, poison_delta, name, mode='poison-upload', dryrun=False):
"""Transfer data to autoML code. Lazy init due to additional libraries."""
from .gcloud import automl_interface
"""Send data to autoML."""
setup = dict(uid=name,
project_id='silent-venture-269920',
multilabel=False,
format='.png',
bucketname='silent-venture-269920-vcm',
display_name=name,
dataset_id=None,
model_id=None,
ntrial=1,
mode=mode,
base_dataset='ImageNet' if kettle.args.dataset == 'ImageNet1k' else kettle.args.dataset,
dryrun=dryrun)
automl_interface(setup, kettle, poison_delta)
def set_random_seed(seed=233):
"""233 = 144 + 89 is my favorite number."""
torch.manual_seed(seed + 1)
torch.cuda.manual_seed(seed + 2)
torch.cuda.manual_seed_all(seed + 3)
np.random.seed(seed + 4)
torch.cuda.manual_seed_all(seed + 5)
random.seed(seed + 6)
def set_deterministic():
"""Switch pytorch into a deterministic computation mode."""
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False