Skip to content

Multilingual Controllable Transformer-Based Lexical Simplification

Notifications You must be signed in to change notification settings

KimChengSHEANG/mTLS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

c27f061 · Sep 20, 2023

History

2 Commits
Jun 1, 2023
Jun 1, 2023
Jun 1, 2023
Jun 1, 2023
Sep 20, 2023
Sep 20, 2023
Sep 20, 2023
Jun 1, 2023
Jun 1, 2023

Repository files navigation

Multilingual Controllable Lexical Simplification

Requirements

Step1. Install PyTorch following this link: https://pytorch.org/get-started/locally/

Examples:
# gpu version
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

# cpu version
pip install torch==1.8.0+cpu torchvision==0.9.0+cpu torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
######

Step2. Install all requirements

pip install -r requirements.txt

Train and Evaluate the TLS-1 Model

Train

  • cd to the folder scripts
python train_and_eval_t5-large-TLS-1.py

Tokens value search

python tokens_pruning_mturk.py --n-trials=50 --lang=en  --phase=valid  --model-name=None
python tokens_pruning_nnseval.py --n-trials=50 --lang=en  --phase=valid --model-name=None
python tokens_pruning_benchls.py --n-trials=50 --lang=en  --phase=valid --model-name=None

#E.g., --model-name=exp_1679326129880862  to load exp_1679326129880862 model

Evaluate

  • First, update the evaluate-TLS-1.py file, and set the model_dir=None means that the script will load the latest model or set a model folder to load the specific one like model_dir=exp_1679619309663310 to load exp_1679619309663310 model.

  • Update the features_kwargs to the best set from the tokens search

  • And run the following script to evaluate

python evaluate-TLS-1.py

Train and Evaluate the TLS-2 Model

# Train 
python train_and_eval_t5-large-TLS-2.py

Tokens value search

python tokens_pruning.py --n-trials=150 --lang=en  --phase=valid --model-name=None
#E.g., --model-name=exp_1679326129880862  to load exp_1679326129880862 model

Evaluate

  • First, update the evaluate.py file, and set the model_dir=None means that the script will load the latest model or set a model folder to load the specific one like model_dir=exp_1679619309663310 to load exp_1679619309663310 model.

  • Update the features_kwargs to the best set from the tokens search

  • And run the following script to evaluate

python evaluate.py

Train and Evaluate the TLS-3 Model

# Train 
python train_and_eval_t5-large-TLS-3.py

Tokens value search

python tokens_pruning.py --n-trials=150 --lang=en  --phase=valid --model-name=None
#E.g., --model-name=exp_1679326129880862  to load exp_1679326129880862 model

Evaluate

  • First, update the evaluate.py file, and set the model_dir=None means that the script will load the latest model or set a model folder to load the specific one like model_dir=exp_1679619309663310 to load exp_1679619309663310 model.

  • Update the features_kwargs to the best set from the tokens search

  • And run the following script to evaluate

python evaluate.py

Train and Evaluate the mTLS Model

# Train 
python train_and_eval_mTLS.py

Tokens value search

sh train_and_eval_mTLS-tokens-search.sh

Evaluate

  • First, update the evaluate.py file, and set the model_dir=None means that the script will load the latest model or set a model folder to load the specific one like model_dir=exp_1679619309663310 to load exp_1679619309663310 model.

  • Update the features_kwargs to the best set from the tokens search for each language

  • And run the following script to evaluate

python evaluate-mTLS.py

About

Multilingual Controllable Transformer-Based Lexical Simplification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published