[Paper] [arXiv] [Checkpoints] [Challenge]
Code for the paper: CLIP-ReIdent: Contrastive Training for Player Re-Identification
Reformulation of the contrastive language-to-image pre-training approach of CLIP to a contrastive image-to-image training approach using the InfoNCE loss as training objective.
Steps for Training and Evaluation:
- get data:
download_data.py
- create DataFrames:
preprocess_data.py
- training:
train.py
- evaluation:
evaluate.py
- final predictions:
predict.py
All settings are done by the configuration dataclass at the beginning of the scripts.
download_data.py
downloads and unzips the challenge data from the provided challenge toolkit.
The following data structure is used for all scripts:
clip_reid
├── data/
│ ├── data_reid/
│ │ ├── reid_challenge/
│ │ │ ├──gallery/
│ │ │ └──query/
│ │ ├── reid_test/
│ │ │ ├──gallery/
│ │ │ └──query/
│ │ ├── reid_training/
│ │ ├── challenge_df.csv
│ │ └── train_df.csv
│ └── synergyreid_data.zip
│
├── clipreid/
│ ├── dataset.py
│ ├── evaluator.py
│ ├── loss.py
│ ├── metrics.py
│ ├── model.py
│ ├── rerank.py
│ ├── trainer.py
│ ├── transforms.py
│ └── utils.py
│
├── model/
│ └── ...checkpoints...
│
├── download_data.py
├── evaluate.py
├── predict.py
├── preprocess_data.py
└── train.py
If you find this repository useful, please consider citing:
@inproceedings{habel2022clipreident,
title={CLIP-ReIdent: Contrastive Training for Player Re-Identification},
author={Habel, Konrad and Deuser, Fabian and Oswald, Norbert},
booktitle={Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports (MMSports’22), October 10, 2022, Lisboa, Portugal},
year={2022}
}