Skip to content

YOLOv5 implementation using TensorFlow 2

Notifications You must be signed in to change notification settings

KuoYuChang/YOLOv5-tf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv5 implementation using TensorFlow 2

Train

  • Change dataset path and class_dict in config.py
  • Choose version in config.py
  • Optional, python generate.py to generate anchors for your dataset and change anchors in config.py
  • Run python train.py for training

Test

  • Run python test.py

Dataset structure

├── Dataset folder 
    ├── IMAGES
        ├── 1111.jpg
        ├── 2222.jpg
    ├── LABELS
        ├── 1111.xml
        ├── 2222.xml
    ├── train.txt
    ├── test.txt

Note

  • xml file should be in PascalVOC format
  • train.txt contains image names without extension

Recommendation (for docker users)

  • docker pull nvcr.io/nvidia/tensorflow:20.12-tf2-py3
  • nvidia-docker run --gpus all -v /your/project/folder:/Projects -it nvcr.io/nvidia/tensorflow:20.12-tf2-py3
  • cd ../Projects
  • apt-get update
  • apt-get install ffmpeg libsm6 libxext6 -y
  • pip install opencv-python

Reference

About

YOLOv5 implementation using TensorFlow 2

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%