Skip to content

Kurumi233/OnlineLabelSmoothing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OnlineLabelSmoothing

This is a re-implementation of Online Label Smoothing. The code is written based on my understanding of the paper. If there's any bug in my code, please tell me in the Issues page.

Usage

from OLS import OnlineLabelSmoothing

ols_loss = OnlineLabelSmoothing(num_classes=1000, use_gpu=True)

# Training
for epoch in range(total_epoch):
    # train()
    # test()
    ols_loss.update()

# Saving
torch.save({'ols': ols_loss.matrix.cpu().data}, 'ols.pth')

Results

Environment

  • Python 3.7
  • PyTorch 1.6.0
  • GPU: Tesla V100 32GB * 1

Other Setting

num_classes: 1000
optimizer: SGD
init_lr: 0.1
weight_decay: 0.0001
momentum: 0.9
lr_gamma: 0.1
total_epoch: 250
batch_size: 256
num_workers: 20
random_seed: 2020
amp: True # automatic mixed-precision training, this function is offered by pytorch

Train

  • use single gpu
python train.py --amp -s cos --loss ce ols --loss_w 0.5 0.5
  • use multi gpus single node
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch\
--nproc_per_node=2 --master_addr 127.0.0.7 --master_port 23456\
train.py --multi-gpus 1 -nw 20 --amp -s multi --loss ce ols --loss_w 0.5 0.5
  • use multi gpus multi nodes
# Limited computing resources

Accuracy on Validation Set of ImageNet2012

Although I used AMP(automatic mixed-precision) to speed up my training, it still took me nearly five days, so I didn't do any other experiments with ols. But there are other records of training ImageNet in my blog.

Model Loss epoches lr_schedule Acc@1 Acc@5
ResNet50 CE 250 Multi Step [75,150,225] 76.32 93.06
ResNet50 CE 250 COS with 5 epochs warmup 76.95 93.27
ResNet50 0.5*CE+0.5*OLS 250 Multi Step [75,150,225] 77.27 93.47
ResNet50 0.5*CE+0.5*OLS 250 COS with 5 epochs warmup 77.79 93.79
ResNet50 LS(e=0.1) 250 COS with 5 epochs warmup 77.62 93.75
ResNet50 LS(e=0.2) 250 COS with 5 epochs warmup 77.89 93.74

Reference

About

Re-implementation of Online Label Smoothing.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages