dataset for training
└── rgb/
│ └── leftImg8bit/
│ └── train/
│ ├── aachen/
│ │ ├── aachen_000000_000000_leftImg8bit.png
│ │ └── ...
│ └── ...
├── disp/
│ └── leftImg8bit/
│ └── train/
│ ├── aachen/
│ │ ├── aachen_000000_000000_leftImg8bit.png
│ │ └── ...
│ └── ...
└── region/
└── leftImg8bit/
└── train/
├── aachen/
│ ├── aachen_000000_000000_leftImg8bit.png
│ └── ...
└── ...
prepared dataset for training
└── config.pth
└── epoch0/
│ ├── 0000000000_img.png
│ ├── 0000000000_label.png
│ ├── 0000000000_transforms.pt
│ └── ...
└── ...
dataset for evaluation
└── leftImg8bit/
│ └── val/
│ ├── frankfurt/
│ │ ├── frankfurt_000000_000294_leftImg8bit.png
│ │ └── ...
│ └── ...
└── gtFine/
└── val/
├── frankfurt/
│ ├── frankfurt_000000_000294_gtFine_labelIds.png
│ └── ...
└── ...
python run.py --data_path path_to_dataset_for_training
generating training data by copy-paste in real time can be time-consuming, you might generate prepared data for repeated use
python run.py --data_path path_to_dataset_for_training --only_generate_data
use preparead data for training
python run.py --data_path prepared dataset for training --use_prepared_data
python eval_unsupervised.py --model_path path_to_pretraining_model --data_path path_to_dataset_for_evaluation
add details on preparing estimated depth/region proposal
upload pretrained models
upload pre-generated depth/region proposal/datasets