Skip to content

A PyTorch Library for Accelerating 3D Deep Learning Research

License

Notifications You must be signed in to change notification settings

Ligo04/kaolin

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research

Overview

NVIDIA Kaolin library provides a PyTorch API for working with a variety of 3D representations and includes a growing collection of GPU-optimized operations such as modular differentiable rendering, fast conversions between representations, data loading, 3D checkpoints, differentiable camera API, differentiable lighting with spherical harmonics and spherical gaussians, powerful quadtree acceleration structure called Structured Point Clouds, interactive 3D visualizer for jupyter notebooks, convenient batched mesh container and more. Visit the Kaolin Library Documentation to get started!

Note that Kaolin library is part of the larger NVIDIA Kaolin effort for 3D deep learning.

Installation and Getting Started

Starting with v0.12.0, Kaolin supports installation with wheels:

# Replace TORCH_VERSION and CUDA_VERSION with your torch / cuda versions
pip install kaolin==0.17.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-{TORCH_VERSION}_cu{CUDA_VERSION}.html

For example, to install kaolin 0.17.0 over torch 2.0.1 and cuda 11.8:

pip install kaolin==0.17.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.0.1_cu118.html

About the Latest Release (0.17.0)

In this version we added sample_points_in_volume function used for "densifying" a gaussian splats, this can be used to improve Physics simulation.

We further improved physics training and simulation using NVIDIA Warp on some of our functions. We also added support for transmittance in the GLTF loader.

Without Densifier With Densifier

Check our updated tutorials:

See change logs for details.

Contributing

Please review our contribution guidelines.

External Projects using Kaolin

Licenses

Most of Kaolin's repository is under Apache v2.0 license, except under kaolin/non_commercial which is under NSCL license restricted to non commercial usage for research and evaluation purposes. For example, FlexiCubes method is included under non_commercial.

Default kaolin import includes Apache-licensed components:

import kaolin

The non-commercial components need to be explicitly imported as:

import kaolin.non_commercial

Citation

If you are using Kaolin library for your research, please cite:

@software{KaolinLibrary,
      author = {Fuji Tsang, Clement and Shugrina, Maria and Lafleche, Jean Francois and Perel, Or and Loop, Charles and Takikawa, Towaki and Modi, Vismay and Zook, Alexander and Wang, Jiehan and Chen, Wenzheng and Shen, Tianchang and Gao, Jun and Jatavallabhula, Krishna Murthy and Smith, Edward and Rozantsev, Artem and Fidler, Sanja and State, Gavriel and Gorski, Jason and Xiang, Tommy and Li, Jianing and Li, Michael and Lebaredian, Rev},
      title = {Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research},
      date = {2024-11-20},
      version = {0.17.0},
      url={\url{https://github.com/NVIDIAGameWorks/kaolin}}
}

Contributors

Current Team:

  • Technical Lead: Clement Fuji Tsang
  • Manager: Maria (Masha) Shugrina
  • Charles Loop
  • Vismay Modi
  • Or Perel
  • Alexander Zook

Other Majors Contributors:

  • Wenzheng Chen
  • Sanja Fidler
  • Jun Gao
  • Jason Gorski
  • Jean-Francois Lafleche
  • Rev Lebaredian
  • Jianing Li
  • Michael Li
  • Krishna Murthy Jatavallabhula
  • Artem Rozantsev
  • Tianchang (Frank) Shen
  • Edward Smith
  • Gavriel State
  • Towaki Takikawa
  • Jiehan Wang
  • Tommy Xiang

About

A PyTorch Library for Accelerating 3D Deep Learning Research

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 76.6%
  • Cuda 10.5%
  • C++ 6.7%
  • Groovy 2.5%
  • JavaScript 1.5%
  • C 0.7%
  • Other 1.5%