Skip to content

A Python library for diffusion simulation and data analysis

License

Notifications You must be signed in to change notification settings

Mascsu/pyDiffusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyDiffusion

Development Status Latest version Supported Python versions License

pyDiffusion combines tools like diffusion simulation, diffusion data smooth, forward simulation analysis (FSA), etc. to help people analyze diffusion data efficiently.

Dependencies

  • Python 3.5+
  • numpy, matplotlib, scipy, pandas

Installation

Via pip(recommend)

pip install pydiffusion

Examples

Diffusion Simulation

Based on Ni-Mo interdiffusion coefficients data at 1100C, simulate the diffusion process for 800 hours. See Diffusion Simulation Example.

https://github.com/zhangqi-chen/pyDiffusion/blob/master/docs/examples/DiffusionSimulation_files/DiffusionSimulation_3.png

Forward Simulation Analysis (FSA)

Calculate interdiffusion coefficients of Ni-Mo at 1100C based on raw diffusion data (1000 hours). See FSA Example.

https://github.com/zhangqi-chen/pyDiffusion/blob/master/docs/examples/FSA_files/FSA_2.png

Error Analysis

The interdiffusion coefficients in Ti-Zr system at 1000C are calculated using FSA. The error bounds of the diffusivity data are estimated using error analysis tool. See Error Analysis Example.

https://github.com/zhangqi-chen/pyDiffusion/blob/master/docs/examples/ErrorAnalysis_files/ErrorAnalysis_3.png

Citing

If you use pydiffusion in your research, please consider citing the following article published in JORS:

Chen, Z., Zhang, Q. and Zhao, J.-C., 2019. pydiffusion: A Python Library for Diffusion Simulation and Data Analysis. Journal of Open Research Software, 7(1), p.13. DOI: http://doi.org/10.5334/jors.255

About

A Python library for diffusion simulation and data analysis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%