This repository is an official PyTorch implementation of "Reprogramming Distillation for Medical Foundation Models"
Coming soon
For example, you can run the following command for RD training.
python run.py \
--dataset aptos \
--method rd \
--downstream_model_name_or_path resnet18 \
--foundation_model_name_or_path pmc_clip \
--batch_size 128 \
--lr 5e-05 \
--epochs 80 \
--epochs_stage2 250 \
--gpu_id 0 \
--kd_weight 1 \
--ce_weight 1 \
--seed 42 >> output.log
If you find RD
useful for your research or development, please cite the following:
@inproceedings{zhou2024reprogramming,
title={Reprogramming Distillation for Medical Foundation Models},
author={Zhou, Yuhang and Du, Siyuan and Li, Haolin and Yao, Jiangchao and Zhang, Ya and Wang, Yanfeng},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={533--543},
year={2024},
organization={Springer}
}