Official implementation of Bilateral Upsampling Network for Single Image Super-Resolution with Arbitrary Scaling Factors(PyTorch)
Our code is built on EDSR(PyTorch) and Mata-SR.
- Pytorch 1.5.0
- Python 3.7
- numpy
- skimage
- imageio
- cv2
- download the code
git clone https://github.com/Merle314/BiSR
cd BiSR/src
- run training demo:
python3 main.py --save RBiRDN_BI --model RBiRDN --epochs 2000 --batch_size 16 --patch_size 50 --save_models --save_results --reset --ext sep --GPU_ids 0,1,2,3 --pre_train ../pretrain/RBiRDN_BI/model/model_latest.pt
- run test demo:
- download the model from the BaiduYun fetch code: p70u
python3 main.py --model RBiCARN --ext img --save RBiCARN_BI_Test_Urban100 --GPU_ids 0 --batch_size 1 --test_only --data_test Urban100 --pre_train ../pretrain/BiCARN_BI/model/model_latest.pt --save_results
- prepare dataset
- download the dataset DIV2K and test dataset fetch code: ev7u GoogleDrive
- change the path_src = DIV2K HR image folder path and run /prepare_dataset/generate_LR_metasr_X1_X4_idealboy.m
- upload the dataset
- change the dir_data in option.py: dir_data = "/path to your DIV2K and testing dataset'(keep the training and test dataset in the same folder: test dataset under the benchmark folder and training dataset rename to DIV2K, or change the data_train to your folder name)
- pre_train model for test
BaiduYun fetch code: p70u
GoogleDrive
cd BiSR/src
python3 main.py --save RBiRDN_BI --model RBiRDN --epochs 2000 --batch_size 16 --patch_size 50 --save_models --save_results --reset --ext sep --GPU_ids 0,1,2,3 --pre_train ../pretrain/RBiRDN_BI/model/model_latest.pt
python3 main.py --model RBiCARN --ext img --save RBiCARN_BI_Test_Urban100 --GPU_ids 0 --batch_size 1 --test_only --data_test Urban100 --pre_train ../pretrain/BiCARN_BI/model/model_latest.pt --save_results