Skip to content
/ BiSR Public

Bilateral Upsampling Network for Single Image Super-Resolution with Arbitrary Scaling Factor

License

Notifications You must be signed in to change notification settings

Merle314/BiSR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BiSR

Official implementation of Bilateral Upsampling Network for Single Image Super-Resolution with Arbitrary Scaling Factors(PyTorch)

Our code is built on EDSR(PyTorch) and Mata-SR.

avatar

Requirements

  • Pytorch 1.5.0
  • Python 3.7
  • numpy
  • skimage
  • imageio
  • cv2

Install and run demo

  1. download the code
git clone https://github.com/Merle314/BiSR
cd BiSR/src
  1. run training demo:
python3 main.py --save RBiRDN_BI --model RBiRDN --epochs 2000 --batch_size 16 --patch_size 50 --save_models --save_results --reset --ext sep --GPU_ids 0,1,2,3 --pre_train ../pretrain/RBiRDN_BI/model/model_latest.pt 

  1. run test demo:
  • download the model from the BaiduYun fetch code: p70u
python3 main.py --model RBiCARN --ext img --save RBiCARN_BI_Test_Urban100 --GPU_ids 0 --batch_size 1 --test_only --data_test Urban100 --pre_train ../pretrain/BiCARN_BI/model/model_latest.pt --save_results

Train and Test as our paper

  1. prepare dataset
  • download the dataset DIV2K and test dataset fetch code: ev7u GoogleDrive
  • change the path_src = DIV2K HR image folder path and run /prepare_dataset/generate_LR_metasr_X1_X4_idealboy.m
  • upload the dataset
  • change the dir_data in option.py: dir_data = "/path to your DIV2K and testing dataset'(keep the training and test dataset in the same folder: test dataset under the benchmark folder and training dataset rename to DIV2K, or change the data_train to your folder name)
  1. pre_train model for test BaiduYun fetch code: p70u
    GoogleDrive

train

cd BiSR/src 
python3 main.py --save RBiRDN_BI --model RBiRDN --epochs 2000 --batch_size 16 --patch_size 50 --save_models --save_results --reset --ext sep --GPU_ids 0,1,2,3 --pre_train ../pretrain/RBiRDN_BI/model/model_latest.pt 

test

python3 main.py --model RBiCARN --ext img --save RBiCARN_BI_Test_Urban100 --GPU_ids 0 --batch_size 1 --test_only --data_test Urban100 --pre_train ../pretrain/BiCARN_BI/model/model_latest.pt --save_results

Citation

About

Bilateral Upsampling Network for Single Image Super-Resolution with Arbitrary Scaling Factor

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published