Hello π
This repo contains numerous edits to the stable-baselines3 code in order to allow agent training on environments which exclusively use PyTorch tensors.
The aim is to benchmark the performance of model training on GPUs when using environments which are inherently vectorized, rather than wrapped in a dummy vector environment.
The root file ./benchmark_gpu.py
is a runnable script which uses a vectorized cartpole environment and
a modified version of the PPO policy from stable-baselines to train an agent on shared tensors. This file needs to
be run with GPU access.
Feel free to leave any comments or questions on the Issue board. Contributions will also be reviewed if you have something to add or edit.
Here's my benchmark performance:
WARNING: Stable Baselines3 is currently in a beta version, breaking changes may occur before 1.0 is released
Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines.
You can read a detailed presentation of Stable Baselines in the Medium article.
These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
Note: despite its simplicity of use, Stable Baselines3 (SB3) assumes you have some knowledge about Reinforcement Learning (RL). You should not utilize this library without some practice. To that extent, we provide good resources in the documentation to get started with RL.
The performance of each algorithm was tested (see Results section in their respective page), you can take a look at the issues #48 and #49 for more details.
Features | Stable-Baselines3 |
---|---|
State of the art RL methods | βοΈ |
Documentation | βοΈ |
Custom environments | βοΈ |
Custom policies | βοΈ |
Common interface | βοΈ |
Ipython / Notebook friendly | βοΈ |
Tensorboard support | βοΈ |
PEP8 code style | βοΈ |
Custom callback | βοΈ |
High code coverage | βοΈ |
Type hints | βοΈ |
Please take a look at the Roadmap and Milestones.
A migration guide from SB2 to SB3 can be found in the documentation.
Documentation is available online: https://stable-baselines3.readthedocs.io/
RL Baselines3 Zoo. is a collection of pre-trained Reinforcement Learning agents using Stable-Baselines3.
It also provides basic scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.
Goals of this repository:
- Provide a simple interface to train and enjoy RL agents
- Benchmark the different Reinforcement Learning algorithms
- Provide tuned hyperparameters for each environment and RL algorithm
- Have fun with the trained agents!
Github repo: https://github.com/DLR-RM/rl-baselines3-zoo
Documentation: https://stable-baselines3.readthedocs.io/en/master/guide/rl_zoo.html
We implement experimental features in a separate contrib repository: SB3-Contrib
This allows SB3 to maintain a stable and compact core, while still providing the latest features, like Truncated Quantile Critics (TQC) or Quantile Regression DQN (QR-DQN).
Documentation is available online: https://sb3-contrib.readthedocs.io/
Note: Stable-Baselines3 supports PyTorch 1.4+.
Stable Baselines3 requires python 3.6+.
To install stable-baselines on Windows, please look at the documentation.
Install the Stable Baselines3 package:
pip install stable-baselines3[extra]
This includes an optional dependencies like Tensorboard, OpenCV or atari-py
to train on atari games. If you do not need those, you can use:
pip install stable-baselines3
Please read the documentation for more details and alternatives (from source, using docker).
Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms.
Here is a quick example of how to train and run PPO on a cartpole environment:
import gym
from stable_baselines3 import PPO
env = gym.make('CartPole-v1')
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)
obs = env.reset()
for i in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
env.close()
Or just train a model with a one liner if the environment is registered in Gym and if the policy is registered:
from stable_baselines3 import PPO
model = PPO('MlpPolicy', 'CartPole-v1').learn(10000)
Please read the documentation for more examples.
All the following examples can be executed online using Google colab notebooks:
- Full Tutorial
- All Notebooks
- Getting Started
- Training, Saving, Loading
- Multiprocessing
- Monitor Training and Plotting
- Atari Games
- RL Baselines Zoo
- PyBullet
Name | Recurrent | Box |
Discrete |
MultiDiscrete |
MultiBinary |
Multi Processing |
---|---|---|---|---|---|---|
A2C | β | βοΈ | βοΈ | βοΈ | βοΈ | βοΈ |
DDPG | β | βοΈ | β | β | β | β |
DQN | β | β | βοΈ | β | β | β |
HER | β | βοΈ | βοΈ | β | β | β |
PPO | β | βοΈ | βοΈ | βοΈ | βοΈ | βοΈ |
SAC | β | βοΈ | β | β | β | β |
TD3 | β | βοΈ | β | β | β | β |
Actions gym.spaces
:
Box
: A N-dimensional box that containes every point in the action space.Discrete
: A list of possible actions, where each timestep only one of the actions can be used.MultiDiscrete
: A list of possible actions, where each timestep only one action of each discrete set can be used.MultiBinary
: A list of possible actions, where each timestep any of the actions can be used in any combination.
All unit tests in stable baselines3 can be run using pytest
runner:
pip install pytest pytest-cov
make pytest
You can also do a static type check using pytype
:
pip install pytype
make type
Codestyle check with flake8
:
pip install flake8
make lint
We try to maintain a list of project using stable-baselines3 in the documentation, please tell us when if you want your project to appear on this page ;)
To cite this repository in publications:
@misc{stable-baselines3,
author = {Raffin, Antonin and Hill, Ashley and Ernestus, Maximilian and Gleave, Adam and Kanervisto, Anssi and Dormann, Noah},
title = {Stable Baselines3},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/DLR-RM/stable-baselines3}},
}
Stable-Baselines3 is currently maintained by Ashley Hill (aka @hill-a), Antonin Raffin (aka @araffin), Maximilian Ernestus (aka @ernestum), Adam Gleave (@AdamGleave) and Anssi Kanervisto (@Miffyli).
Important Note: We do not do technical support, nor consulting and don't answer personal questions per email. Please post your question on the RL Discord, Reddit or Stack Overflow in that case.
To any interested in making the baselines better, there is still some documentation that needs to be done. If you want to contribute, please read CONTRIBUTING.md guide first.
The initial work to develop Stable Baselines3 was partially funded by the project Reduced Complexity Models from the Helmholtz-Gemeinschaft Deutscher Forschungszentren.
The original version, Stable Baselines, was created in the robotics lab U2IS (INRIA Flowers team) at ENSTA ParisTech.
Logo credits: L.M. Tenkes