Skip to content

MingyuLau/DiG-superresolution

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiG-super

本仓库为论文DiG的超分辨率head实现, 微调的shell脚本是finetune.sh, 测试脚本是evaluation.sh

构建超分图像请使用tools/create_mae_lmdb.py

原仓库

Official PyTorch implementation of DiG

This repository is built upon MoCo V3 and MAE, thanks very much!

Data preparation

All datasets for pre-training and fine-tuning are processed from public datasets.

Unlabeled Real Data CC-OCR
Synthetic Text Data SynthText, Synth90k (Baiduyun with passwd: wi05)
Annotated Real Data TextOCR, OpenImageTextV5
Scene Text Recognition Benchmarks IIIT5k, SVT, IC13, IC15, SVTP, CUTE, COCOText, CTW, Total-Text, HOST, WOST
Handwritten Text Training Data CVL, IAM
Handwritten Text Recognition Benchmarks CVL, IAM

Setup

conda env create -f environment.yml

Run

  1. Pre-training
# Set the path to save checkpoints
OUTPUT_DIR='output/pretrain_dig'
# path to imagenet-1k train set
DATA_PATH='/path/to/pretrain_data/'


# batch_size can be adjusted according to the graphics card
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 run_mae_pretraining_moco.py \
        --image_alone_path ${DATA_PATH} \
        --mask_ratio 0.7 \
        --batch_size 128 \
        --opt adamw \
        --output_dir ${OUTPUT_DIR} \
        --epochs 10 \
        --warmup_steps 5000 \
        --max_len 25 \
        --num_view 2 \
        --moco_dim 256 \
        --moco_mlp_dim 4096 \
        --moco_m 0.99 \
        --moco_m_cos \
        --moco_t 0.2 \
        --num_windows 4 \
        --contrast_warmup_steps 0 \
        --contrast_start_epoch 0 \
        --loss_weight_pixel 1. \
        --loss_weight_contrast 0.1 \
        --only_mim_on_ori_img \
        --weight_decay 0.1 \
        --opt_betas 0.9 0.999 \
        --model pretrain_simmim_moco_ori_vit_small_patch4_32x128 \
        --patchnet_name no_patchtrans \
        --encoder_type vit \
  1. Fine-tuning
# Set the path to save checkpoints
OUTPUT_DIR='output/'
# path to imagenet-1k set
DATA_PATH='/path/to/finetune_data'
# path to pretrain model
MODEL_PATH='/path/to/pretrain/checkpoint.pth'

# batch_size can be adjusted according to the graphics card
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 --master_port 10041 run_class_finetuning.py \
    --model simmim_vit_small_patch4_32x128 \
    --data_path ${DATA_PATH} \
    --eval_data_path ${DATA_PATH} \
    --finetune ${MODEL_PATH} \
    --output_dir ${OUTPUT_DIR} \
    --batch_size 256 \
    --opt adamw \
    --opt_betas 0.9 0.999 \
    --weight_decay 0.05 \
    --data_set image_lmdb \
    --nb_classes 97 \
    --smoothing 0. \
    --max_len 25 \
    --epochs 10 \
    --warmup_epochs 1 \
    --drop 0.1 \
    --attn_drop_rate 0.1 \
    --drop_path 0.1 \
    --dist_eval \
    --lr 1e-4 \
    --num_samples 1 \
    --fixed_encoder_layers 0 \
    --decoder_name tf_decoder \
    --use_abi_aug \
    --num_view 2 \
  1. Evaluation
# Set the path to save checkpoints
OUTPUT_DIR='output/'
# path to imagenet-1k set
DATA_PATH='/path/to/test_data'
# path to finetune model
MODEL_PATH='/path/to/finetune/checkpoint.pth'

# batch_size can be adjusted according to the graphics card
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=$opt_nproc_per_node --master_port 10040 run_class_finetuning.py \
    --model simmim_vit_small_patch4_32x128 \
    --data_path ${DATA_PATH} \
    --eval_data_path ${DATA_PATH} \
    --output_dir ${OUTPUT_DIR} \
    --batch_size 512 \
    --opt adamw \
    --opt_betas 0.9 0.999 \
    --weight_decay 0.05 \
    --data_set image_lmdb \
    --nb_classes 97 \
    --smoothing 0. \
    --max_len 25 \
    --resume ${MODEL_PATH} \
    --eval \
    --epochs 20 \
    --warmup_epochs 2 \
    --drop 0.1 \
    --attn_drop_rate 0.1 \
    --dist_eval \
    --num_samples 1000000 \
    --fixed_encoder_layers 0 \
    --decoder_name tf_decoder \
    --beam_width 0 \

Result

model pretrain finetune average accuracy weight
vit-small 10e 10e 85.21% pretrain finetune

Citation

If you find this project helpful for your research, please cite the following paper:

@inproceedings{DiG,
  author    = {Mingkun Yang and
               Minghui Liao and
               Pu Lu and
               Jing Wang and
               Shenggao Zhu and
               Hualin Luo and
               Qi Tian and
               Xiang Bai},
  editor    = {Jo{\~{a}}o Magalh{\~{a}}es and
               Alberto Del Bimbo and
               Shin'ichi Satoh and
               Nicu Sebe and
               Xavier Alameda{-}Pineda and
               Qin Jin and
               Vincent Oria and
               Laura Toni},
  title     = {Reading and Writing: Discriminative and Generative Modeling for Self-Supervised
               Text Recognition},
  booktitle = {{MM} '22: The 30th {ACM} International Conference on Multimedia, Lisboa,
               Portugal, October 10 - 14, 2022},
  pages     = {4214--4223},
  publisher = {{ACM}},
  year      = {2022},
  url       = {https://doi.org/10.1145/3503161.3547784},
  doi       = {10.1145/3503161.3547784},
  timestamp = {Fri, 14 Oct 2022 14:25:06 +0200},
  biburl    = {https://dblp.org/rec/conf/mm/YangLLWZLTB22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details. If you are going to use it in a product, we suggest you contact us regarding possible patent issues.

About

DiG超分辨率head非官方实现

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published