Skip to content

ModelQ is a lightweight, battle-tested Python library for scheduling and queuing machine learning inference tasks. It's designed as a faster and simpler alternative to Celery for ML workloads, using Redis and threading to efficiently run background tasks.

License

Notifications You must be signed in to change notification settings

ModelsLab/modelq

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

97 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

ModelsLab Logo

ModelQ

ModelQ Logo

PyPI version Downloads

ModelQ is a lightweight Python library for scheduling and queuing machine learning inference tasks. It's designed as a faster and simpler alternative to Celery for ML workloads, using Redis and threading to efficiently run background tasks.

ModelQ is developed and maintained by the team at Modelslab.

About Modelslab: Modelslab provides powerful APIs for AI-native applications including:

  • Image generation
  • Uncensored chat
  • Video generation
  • Audio generation
  • And much more

โœจ Features

  • โœ… Retry support (automatic and manual)
  • โฑ Timeout handling for long-running tasks
  • ๐Ÿ” Manual retry using RetryTaskException
  • ๐ŸŽฎ Streaming results from tasks in real-time
  • ๐Ÿงน Middleware hooks for task lifecycle events
  • โšก Fast, non-blocking concurrency using threads
  • ๐Ÿงต Built-in decorators to register tasks quickly
  • ๐Ÿ’ƒ Redis-based task queueing
  • ๐Ÿ–ฅ๏ธ CLI interface for orchestration
  • ๐Ÿ”ข Pydantic model support for task validation and typing
  • ๐ŸŒ Auto-generated REST API for tasks

๐Ÿ—† Installation

pip install modelq

๐Ÿš€ Auto-Generated REST API

One of ModelQ's most powerful features is the ability to expose your tasks as HTTP endpoints automatically.

By running a single command, every registered task becomes an API route:

modelq serve-api --app-path main:modelq_app --host 0.0.0.0 --port 8000

How It Works

  • Each task registered with @q.task(...) is turned into a POST endpoint under /tasks/{task_name}
  • If your task uses Pydantic input/output, the endpoint will validate the request and return a proper response schema
  • The API is built using FastAPI, so you get automatic Swagger docs at:
http://localhost:8000/docs

Example Usage

curl -X POST http://localhost:8000/tasks/add \
  -H "Content-Type: application/json" \
  -d '{"a": 3, "b": 7}'

You can now build ML inference APIs without needing to write any web code!


๐Ÿ–ฅ๏ธ CLI Usage

You can interact with ModelQ using the modelq command-line tool. All commands require an --app-path parameter to locate your ModelQ instance in module:object format.

Start Workers

modelq run-workers main:modelq_app --workers 2

Start background worker threads for executing tasks.

Check Queue Status

modelq status --app-path main:modelq_app

Show number of servers, queued tasks, and registered task types.

List Queued Tasks

modelq list-queued --app-path main:modelq_app

Display a list of all currently queued task IDs and their names.

Clear the Queue

modelq clear-queue --app-path main:modelq_app

Remove all tasks from the queue.

Remove a Specific Task

modelq remove-task --app-path main:modelq_app --task-id <task_id>

Remove a specific task from the queue by ID.

Serve API

modelq serve-api --app-path main:modelq_app --host 0.0.0.0 --port 8000 --log-level info

Start a FastAPI server for ModelQ to accept task submissions over HTTP.

Version

modelq version

Print the current version of ModelQ CLI.

More commands like requeue-stuck, prune-results, and get-task-status are coming soon.


๐Ÿง  Basic Usage

from modelq import ModelQ
from modelq.exceptions import RetryTaskException
from redis import Redis
import time

imagine_db = Redis(host="localhost", port=6379, db=0)
q = ModelQ(redis_client=imagine_db)

@q.task(timeout=10, retries=2)
def add(a, b):
    return a + b

@q.task(stream=True)
def stream_multiples(x):
    for i in range(5):
        time.sleep(1)
        yield f"{i+1} * {x} = {(i+1) * x}"

@q.task()
def fragile(x):
    if x < 5:
        raise RetryTaskException("Try again.")
    return x

q.start_workers()

task = add(2, 3)
print(task.get_result(q.redis_client))

๐Ÿ”ข Pydantic Support

ModelQ supports Pydantic models as both input and output types for tasks. This allows automatic validation of input parameters and structured return values.

Example

from pydantic import BaseModel, Field
from redis import Redis
from modelq import ModelQ
import time

class AddIn(BaseModel):
    a: int = Field(ge=0)
    b: int = Field(ge=0)

class AddOut(BaseModel):
    total: int

redis_client = Redis(host="localhost", port=6379, db=0)
mq = ModelQ(redis_client=redis_client)

@mq.task(schema=AddIn, returns=AddOut)
def add(payload: AddIn) -> AddOut:
    print(f"Processing addition: {payload.a} + {payload.b}.")
    time.sleep(10)  # Simulate some processing time
    return AddOut(total=payload.a + payload.b)

Getting Result

output = job.get_result(mq.redis_client, returns=AddOut)

ModelQ will validate inputs using Pydantic and serialize/deserialize results seamlessly.


โš™๏ธ Middleware Support

ModelQ allows you to plug in custom middleware to hook into events:

Supported Events

  • before_worker_boot
  • after_worker_boot
  • before_worker_shutdown
  • after_worker_shutdown
  • before_enqueue
  • after_enqueue
  • on_error

Example

from modelq.app.middleware import Middleware

class LoggingMiddleware(Middleware):
    def before_enqueue(self, *args, **kwargs):
        print("Task about to be enqueued")

    def on_error(self, task, error):
        print(f"Error in task {task.task_id}: {error}")

Attach to ModelQ instance:

q.middleware = LoggingMiddleware()

๐Ÿ› ๏ธ Configuration

Connect to Redis using custom config:

from redis import Redis

imagine_db = Redis(host="localhost", port=6379, db=0)
modelq = ModelQ(
    redis_client=imagine_db,
    delay_seconds=10,  # delay between retries
    webhook_url="https://your.error.receiver/discord-or-slack"
)

๐Ÿ“œ License

ModelQ is released under the MIT License.


๐Ÿค Contributing

We welcome contributions! Open an issue or submit a PR at github.com/modelslab/modelq.

About

ModelQ is a lightweight, battle-tested Python library for scheduling and queuing machine learning inference tasks. It's designed as a faster and simpler alternative to Celery for ML workloads, using Redis and threading to efficiently run background tasks.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages