Skip to content

This repository holds open source datasets for various machine learning domains with a link to download and use them

Notifications You must be signed in to change notification settings

Mridul-2003/open-source-ml-datasets

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 

Repository files navigation

Open Source Machine Learning Datasets

This repository holds open-source datasets for various machine learning domains ready to download and use for ML!

Welcome to DagsHub’s non-code contribution project for Hacktoberfest 2023!

hero-narrow

In this exciting Hacktoberfest challenge, DagsHub invites you to join us in enriching the open-source dataset domain and enhancing its accessibility and capabilities for the global machine-learning community.

What is DagsHub?

DagsHub is a centralized platform to host and manage machine learning projects including code, data, models, experiments, annotations, model registry, and more! DagsHub does the MLOps heavy lifting for its users. Every repository comes with configured S3 storage, an experiment tracking server, and an annotation workspace - all using popular open-source tools like MLflow, DVC, Git, and Label Studio.

What is this challenge?

Your mission is to import datasets from various sources, such as Kaggle, Hugging Face, or any other relevant platforms, and integrate them into DagsHub. Hosting those datasets on DagsHub exposes them to our Data Engine, unlocking unique data management capabilities such as query, visualize, annotate, and streaming for ML training. Not only that, by adding crucial information and context to these datasets, you'll significantly boost their accessibility and usability.

How do I contribute?

To simplify this process, we've created a user-friendly Colab notebook that will do the import for you! Here's a quick overview of what you need to do:

  1. Sign-up to Hacktoberfest & DagsHub.

  2. Join Hacktoberfest 2023 Discord channel.

  3. Claim the dataset by opening a new issue here and naming it after the dataset. Please make sure that the dataset wasn't claimed and that it’s open source.

  4. Import a Dataset using those Colab notebooks: Hugging Face notebook or Kaggle notebook.

  5. Add a README.md file (e.g., Librispeech ASR corpus) to the repository on DagsHub with the following information:

    1. Description
    2. Citation
    3. Prerequisite
    4. License
    5. Additional information

    Note: You can create a markdown file locally, upload it to DagsHub from the repository UI, and edit it from DagsHub - no need for coding whatsoever!

  6. Add relevant tags to the repository and files.

  7. Add the datasethacktoberfest-2023, hacktoberfest labels to the DagsHub repository.

  8. Open a Pull Request on here with the README file and a link to the DagsHub repo.

About

This repository holds open source datasets for various machine learning domains with a link to download and use them

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published