Skip to content

Commit

Permalink
fix: remove redundant blanks
Browse files Browse the repository at this point in the history
  • Loading branch information
khwengXU committed Jul 3, 2022
1 parent 2e1c276 commit da1d458
Showing 1 changed file with 5 additions and 5 deletions.
10 changes: 5 additions & 5 deletions docs/Test_speed.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,25 +16,25 @@ Here, we use Torch1.8.0 inference on V100 and TensorRT 7.2 Cuda 10.2 Cudnn 8.0.2

#### 2.1 Torch Inference on V100

To get inference speed without TensorRT on V100, you can run the following command:
To get inference speed without TensorRT on V100, you can run the following command:

```shell
python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6n.pt --task speed [--half]
python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6n.pt --task speed [--half]
```

- Speed results with batchsize = 1 are unstable in multiple runs, thus we do not provide the bs1 speed results.

#### 2.2 TensorRT Inference on T4

To get inference speed with TensorRT in FP16 mode on T4, you can follow the steps below:
To get inference speed with TensorRT in FP16 mode on T4, you can follow the steps below:

First, export pytorch model as onnx format using the following command:
First, export pytorch model as onnx format using the following command:

```shell
python deploy/ONNX/export_onnx.py --weights yolov6n.pt --device 0 --batch [1 or 32]
```

Second, generate an inference trt engine and test speed using `trtexec`:
Second, generate an inference trt engine and test speed using `trtexec`:

```
trtexec --onnx=yolov6n.onnx --workspace=1024 --avgRuns=1000 --inputIOFormats=fp16:chw --outputIOFormats=fp16:chw
Expand Down

0 comments on commit da1d458

Please sign in to comment.