Implementation for NeurIPS 2019 paper :
paper link: https://arxiv.org/abs/1909.03388
[Slide]
- To run experiments of Fashion MNIST dataset in
fashion
directory:
python3 fashion.py --r noisy_amount --s seed --c case_num --device device_num
noise_amount: the amount of noise amount r of label flipping. (0 <= r <= 1)
seed: random seed
case_num : 1: class-independent; 2: class-dependent (a); 3: class-dependent (b)
device_num: GPU number
-
To run experiments of CIFAR10 dataset in
CIFAR-10
directory, pleases run all the baseline in the following order:python3 CE.py --r noise_amount --s seed --device device_num --root path --noise-type noise-type python3 FW.py --r noise_amount --s seed --device device_num --root path --noise-type noise-type python3 GCE.py --r noise_amount --s seed --device device_num --root path --noise-type noise-type python3 LCCN.py --r noise_amount --s seed --device device_num --root path --noise-type noise-type python3 DMI.py --r noise_amount --s seed --device device_num --root path --noise-type noise-type noise_amount: the amount of noise amount r of label flipping. (0 <= r <= 1) seed: random seed device_num: GPU number root: path to the CIFAR-10 dataset noise-type: class-dependent or class-independent (default:class-dependent)
Link to the dataset: https://www.kaggle.com/c/dogs-vs-cats
-
To run experiments of Dog vs. Cats dataset in
dogcat
directory, pleases run all the baseline in the following order:python3 CE.py --r noise_amount --s seed --device device_num python3 FW.py --r noise_amount --s seed --device device_num python3 GCE.py --r noise_amount --s seed --device device_num python3 LCCN.py --r noise_amount --s seed --device device_num python3 DMI.py --r noise_amount --s seed --device device_num noise_amount: the amount of noise amount r of label flipping. (0 <= r <= 1) seed: random seed device_num: GPU number
-
To download the dataset:
python3 download_dataset.py MR
-
To run experiments of MR dataset in
MR
directory:python3 main.py --r noise_amount --s seed --device device_num WordCNN noise_amount: the amount of noise amount r of label flipping. (0 <= r <= 1) seed: random seed device_num: GPU number
Link to the dataset: https://drive.google.com/drive/folders/0B67_d0rLRTQYU2E4aHNHaE1uMTg?resourcekey=0-_FShcGYZwIyESjnz6S6aLQ&usp=sharing . We have split the data into clean_test.txt, clean_train. txt,clean_val.txt and noisy_train.txt in our ./clothing
directory.
-
To run experiments of Clothing1M dataset in
clothing
directory, pleases run all the baseline in the following order:python3 main.py --device device_num device_num: GPU number
Combine all the APIs to dataset into one file.