-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfocal_loss.py
94 lines (78 loc) · 3.46 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
# class FocalLoss(nn.Module):
# def __init__(self, ):
# super(FocalLoss, self).__init__()
# self.device = torch.device("cuda:" + str(0))
# self.focal_loss_alpha = 0.8
# self.focal_loss_gamma = 2
#
# def forward(self, inputs, targets):
# gpu_targets = targets.cuda()
# alpha_factor = torch.ones(gpu_targets.shape).cuda() * self.focal_loss_alpha
# alpha_factor = torch.where(torch.eq(gpu_targets, 1), alpha_factor, 1. - alpha_factor)
# focal_weight = torch.where(torch.eq(gpu_targets, 1), 1. - inputs, inputs)
# focal_weight = alpha_factor * torch.pow(focal_weight, self.focal_loss_gamma)
# targets = targets.type(torch.FloatTensor)
# inputs = inputs.cuda()
# targets = targets.cuda()
# bce = F.binary_cross_entropy(inputs, targets)
# focal_weight = focal_weight.cuda()
# cls_loss = focal_weight * bce
# return cls_loss.sum()
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# from torch.autograd import Variable
class FocalLoss(nn.Module):
r"""
This criterion is a implemenation of Focal Loss, which is proposed in
Focal Loss for Dense Object Detection.
Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class])
The losses are averaged across observations for each minibatch.
Args:
alpha(1D Tensor, Variable) : the scalar factor for this criterion
gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5),
putting more focus on hard, misclassified examples
size_average(bool): By default, the losses are averaged over observations for each minibatch.
However, if the field size_average is set to False, the losses are
instead summed for each minibatch.
"""
def __init__(self, class_num, alpha=None, gamma=2, size_average=True):
super(FocalLoss, self).__init__()
if alpha is None:
self.alpha = Variable(torch.ones(class_num, 1))
else:
if isinstance(alpha, Variable):
self.alpha = alpha
else:
self.alpha = Variable(alpha)
self.gamma = gamma
self.class_num = class_num
self.size_average = size_average
def forward(self, inputs, targets):
N = inputs.size(0)
C = inputs.size(1)
P = F.softmax(inputs)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = Variable(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
# print(class_mask)
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
alpha = self.alpha[ids.data.view(-1)]
probs = (P * class_mask).sum(1).view(-1, 1)
log_p = probs.log()
# print('probs size= {}'.format(probs.size()))
# print(probs)
batch_loss = -alpha * (torch.pow((1 - probs), self.gamma)) * log_p
# print('-----bacth_loss------')
# print(batch_loss)
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
return loss