Skip to content

Commit

Permalink
Merge pull request theislab#27 from mari-ga/main
Browse files Browse the repository at this point in the history
Correction for old merge
  • Loading branch information
Zethson authored Jan 8, 2024
2 parents 94067fd + 1a243c0 commit c4736af
Show file tree
Hide file tree
Showing 23 changed files with 676 additions and 972 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -6,4 +6,5 @@ result*/
testing/
testing*
*.pyc
docs/build/
docs/build/
nextflow_internal.config
15 changes: 1 addition & 14 deletions bin/bff.R
Original file line number Diff line number Diff line change
Expand Up @@ -74,8 +74,8 @@ if(as.logical(args$preprocess)){
# Step 3: Create a vector from the barcodesl
vector <- unlist(words)
print("Preprocessing")
#counts <- Read10X(args$fileHto)
counts <- ProcessCountMatrix(rawCountData = args$fileHto, barcodeBlacklist = vector)
print("Preprocessing done")
}else{
print("No preprocessing")
counts <- Read10X(args$fileHto)
Expand All @@ -89,19 +89,6 @@ if (!is.null(args$methodsForConsensus)) {

perCell_args <- args$perCellSaturation
perCell <- ifelse(perCell_args == "null" || perCell_args == "Null", NULL, perCell_args)
<<<<<<< HEAD
<<<<<<< HEAD
print("---------------------")
print(perCell)
print("---------------------")
=======
print(perCell)

>>>>>>> c781241 (bff re-added problematic parameter)
=======
print("---------------------")
print(perCell)
print("---------------------")

if(args$methodsForConsensus=="bff_raw" || args$methodsForConsensus=="bff_cluster" || args$methodsForConsensus=="bff_raw,bff_cluster" || is.null(args$methodsForConsensus) )
#Only Bff in its different variations is available
Expand Down
1 change: 1 addition & 0 deletions bin/demuxem.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
# load input rna data
rna_data = sc.read_10x_mtx(args.rna_matrix_dir)
hashing_data = sc.read_10x_mtx(args.hto_matrix_dir,gex_only=False)
rna = args.rna_matrix_dir
filter = ""
if args.filter_demuxem.lower() in ['true', 't', 'yes', 'y', '1']:
filter = True
Expand Down
104 changes: 0 additions & 104 deletions bin/demuxmix.R

This file was deleted.

58 changes: 32 additions & 26 deletions bin/dropletUtils.R
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,11 @@ parser$add_argument("--objectOutEmptyDrops", default = "emptyDroplets",
help = "Prefix name for the emptyDrops RDS file")
parser$add_argument("--assignmentOutEmptyDrops", default = "emptyDroplets",
help = "prefex name for emptyDrops assignment CSV file")
parser$add_argument("--runEmptyDrops", action="store_false",
help = "Executes emptyDrops function only when desired, recomended only for raw data")

#for hashedDrops
parser$add_argument("--ambient", action = "store_true",
parser$add_argument("--ambient", action = "store_false",
help = "Whether to use the relative abundance of each HTO in the ambient solution from emtpyDrops, set TRUE only when test_ambient is TRUE.")
parser$add_argument("--minProp", default = 0.05, type = "double",
help = "Numeric scalar to be used to infer the ambient profile when ambient=NULL,")
Expand Down Expand Up @@ -60,36 +62,40 @@ parser$add_argument("--gene_col", help = "Specify which column of genes.tsv or f
args <- parser$parse_args()

hto <- Read10X(data.dir = args$raw_hto_matrix_dir, gene.column = args$gene_col)

emptyDrops_out <- emptyDrops(hto, lower = args$lower, niters = args$niters,
test.ambient = args$testAmbient,
ignore = args$ignore,
alpha = args$alpha, round = args$round,
by.rank = args$byRank)

print("------------------- emptyDrops finished ---------------------------------")
combinations_transformed <- ifelse(tolower(args$combinations) == "null", NULL, args$combinations)

if (args$runEmptyDrops == TRUE) {
rna <- Read10X(data.dir = args$raw_rna_matrix_dir,gene.column = args$gene_col)
print("------------------- executing emptyDrops ---------------------------------")
ignore_transformed <- ifelse(tolower(args$ignore) == "null", NULL, args$ignore)
emptyDrops_out <- emptyDrops(rna, lower = args$lower, niters = args$niters,
test.ambient = args$testAmbient,
ignore = NULL,
alpha = args$alpha, round = args$round,
by.rank = args$byRank)


write.csv(emptyDrops_out, paste0(args$outputdir, "/", args$assignmentOutEmptyDrops, ".csv"))
saveRDS(emptyDrops_out, file=paste0(args$outputdir, "/", args$objectOutEmptyDrops, ".rds"))

print("------------------- filtering empty droplets ----------------------------")
is.cell <- emptyDrops_out$FDR <= args$isCellFDR
colors <- ifelse(is.cell, "red", "black")
png(paste0(args$outputdir, "/", "plot_emptyDrops.png"))
plot(emptyDrops_out$Total, -emptyDrops_out$LogProb, col=colors, xlab="Total UMI count", ylab="-Log Probability")
dev.off()


print("-------- Following Files are saved in folder hashedDrops_out ------------")
print(paste0(args$objectOutEmptyDrops, ".rds"))
print(paste0(args$assignmentOutEmptyDrops, ".csv"))
write.csv(emptyDrops_out, paste0(args$outputdir, "/", args$assignmentOutEmptyDrops, ".csv"))
saveRDS(emptyDrops_out, file=paste0(args$outputdir, "/", args$objectOutEmptyDrops, ".rds"))

print("------------------- filtering empty droplets ----------------------------")
is.cell <- emptyDrops_out$FDR <= args$isCellFDR
colors <- ifelse(is.cell, "red", "black")
png(paste0(args$outputdir, "/", "plot_emptyDrops.png"))
plot(emptyDrops_out$Total, -emptyDrops_out$LogProb, col=colors, xlab="Total UMI count", ylab="-Log Probability")
dev.off()

if (args$ambient == TRUE) {
hashedDrops_out <- hashedDrops(hto[,which(is.cell)], min.prop = args$minProp, ambient = metadata(emptyDrops_out)$ambient, pseudo.count = args$pseudoCount, constant.ambient = args$constantAmbient, doublet.nmads = args$doubletNmads, doublet.min = args$doubletMin, doublet.mixture = args$doubletMixture, confident.nmads = args$confidentNmads, confident.min = args$confidenMin, combinations = args$combinations)
if (args$ambient == TRUE) {
hashedDrops_out <- hashedDrops(hto[,which(is.cell)], min.prop = args$minProp, ambient = metadata(emptyDrops_out)$ambient, pseudo.count = args$pseudoCount, constant.ambient = args$constantAmbient, doublet.nmads = args$doubletNmads, doublet.min = args$doubletMin, doublet.mixture = args$doubletMixture, confident.nmads = args$confidentNmads, confident.min = args$confidenMin, combinations = combinations_transformed)
} else {
hashedDrops_out <- hashedDrops(hto[,which(is.cell)], min.prop = args$minProp, pseudo.count = args$pseudoCount, constant.ambient = args$constantAmbient, doublet.nmads = args$doubletNmads, doublet.min = args$doubletMin, doublet.mixture = args$doubletMixture, confident.nmads = args$confidentNmads, confident.min = args$confidenMin, combinations = combinations_transformed)
}
} else {
hashedDrops_out <- hashedDrops(hto[,which(is.cell)], min.prop = args$minProp, pseudo.count = args$pseudoCount, constant.ambient = args$constantAmbient, doublet.nmads = args$doubletNmads, doublet.min = args$doubletMin, doublet.mixture = args$doubletMixture, confident.nmads = args$confidentNmads, confident.min = args$confidenMin, combinations = args$combinations)
hashedDrops_out <- hashedDrops(hto,min.prop = args$minProp,pseudo.count = args$pseudoCount, constant.ambient = args$constantAmbient,doublet.nmads = args$doubletNmads, doublet.min = args$doubletMin,confident.nmads = args$confidentNmads,confident.min = args$confidenMin)

}

print("------------------- hashedDrops finished ---------------------------------")

ignore <- args$ignore
if (is.null(ignore)) {
Expand Down
16 changes: 14 additions & 2 deletions bin/generate_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,5 +26,17 @@
adata.write("adata_with_donor_matching.h5ad")

if args.generate_mudata:
# write mudata_with_donor_matching.h5mu data
pass
rna_data = sc.read_10x_mtx(args.read_rna_mtx)
hto_data = sc.read_10x_mtx(args.read_hto_mtx, gex_only=False)
assignment_dir = os.path.join(args.assignment,
[filename for filename in os.listdir(args.assignment) if filename == "all_assignment_after_match.csv"][0])

assignment = pd.read_csv(assignment_dir, index_col = 0)
mudata = MuData({"rna": rna_data, "hto": hto_data })

mudata['rna'].obs = mudata['rna'].obs.merge(args.assignment, left_index=True, right_index=True, how='left')
mudata['rna'].obs.rename(columns={mudata['rna'].obs.columns[0]: 'donor'}, inplace=True)
mudata['rna'].obs.donor = mudata['rna'].obs.donor.fillna("negative")
mudata['rna'].obs.donor = mudata['rna'].obs.donor.astype(str)
mudata.update()
mudata.write("mudata_with_donor_matching.h5mu")
Loading

0 comments on commit c4736af

Please sign in to comment.