Skip to content

Commit

Permalink
Update performance after benchmark
Browse files Browse the repository at this point in the history
  • Loading branch information
ZwwWayne committed Jun 21, 2020
1 parent ce70413 commit b4cc412
Show file tree
Hide file tree
Showing 7 changed files with 72 additions and 27 deletions.
26 changes: 26 additions & 0 deletions configs/dynamic_voxelization/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Dynamic Voxelization

## Introduction

We implement Dynamic Voxelization proposed in and provide its results and models on KITTI dataset.
```
@article{zhou2019endtoend,
title={End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds},
author={Yin Zhou and Pei Sun and Yu Zhang and Dragomir Anguelov and Jiyang Gao and Tom Ouyang and James Guo and Jiquan Ngiam and Vijay Vasudevan},
year={2019},
eprint={1910.06528},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

## Results

### KITTI

| Model |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: |
|[SECOND](./dv_second_secfpn_6x8_80e_kitti-3d-car.py)|Car |cyclic 80e|5.5||78.83||
|[SECOND](./dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py)| 3 Class|cosine 80e|5.5||65.10||
|[PointPillars](./dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)| Car|cyclic 80e|4.7||77.76||
10 changes: 7 additions & 3 deletions configs/mvxnet/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# MVX-Net: Multimodal VoxelNet for 3D Object Detection

## Introduction

We implement MVX-Net and provide its results and models on KITTI dataset.
```
@inproceedings{sindagi2019mvx,
Expand All @@ -12,9 +14,11 @@ We implement MVX-Net and provide its results and models on KITTI dataset.
}
```
## Usage

## Results

### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |

| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](../) |||||
| [SECFPN](./dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py)|3 Class|cosine 80e|6.7||63.0||
13 changes: 9 additions & 4 deletions configs/parta2/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
# From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network

## Introduction

We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.

```
@article{shi2020points,
title={From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network},
Expand All @@ -11,9 +14,11 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
}
```
## Usage
## Results

### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](../) |||||

| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py) |3 Class|cyclic 80e|4.1||67.9||
| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py) |Car |cyclic 80e|4.0||79.16||
18 changes: 13 additions & 5 deletions configs/pointpillars/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
# PointPillars: Fast Encoders for Object Detection from Point Clouds

## Introduction

We implement PointPillars and provide the results and checkpoints on KITTI and nuScenes datasets.

```
@inproceedings{lang2019pointpillars,
title={Pointpillars: Fast encoders for object detection from point clouds},
Expand All @@ -11,14 +14,19 @@ We implement PointPillars and provide the results and checkpoints on KITTI and n
}
```
## Usage

## Results

### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](../) |||||

| Backbone|Class | Lr schd | Mem (GB) | Inf time (fps) | AP |Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: |
| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)|Car|cyclic 160e|5.4||77.1||
| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py)|3 Class|cyclic 160e|5.5||59.5|

### nuScenes

| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](../) |||||
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7||
|[FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||40.0|53.3||
8 changes: 4 additions & 4 deletions configs/regnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ For other pre-trained models or self-implemented regnet models, the users are re

| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](../) | 2x ||||
|[RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)| 2x ||||
| [FPN](../) | 2x ||||
|[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)| 2x ||||
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7||
|[RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)| 2x |16.4||41.2|55.2||
|[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.1||40.0|53.3||
|[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.3||44.8|56.4||
12 changes: 6 additions & 6 deletions configs/second/README.md
Original file line number Diff line number Diff line change
@@ -1,22 +1,22 @@
# Second: Sparsely embedded convolutional detection

## Introduction

We implement SECOND and provide the results and checkpoints on KITTI dataset.
```
@article{yan2018second,
title={Second: Sparsely embedded convolutional detection},
author={Yan, Yan and Mao, Yuxing and Li, Bo},
journal={Sensors},
volume={18},
number={10},
pages={3337},
year={2018},
publisher={Multidisciplinary Digital Publishing Institute}
}
```
## Usage
## Results

### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP |Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](../) |||||
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4||79.07|
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4||64.41|
12 changes: 7 additions & 5 deletions configs/votenet/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# Deep Hough Voting for 3D Object Detection in Point Clouds

## Introduction
We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRGBD datasets.
```
Expand All @@ -9,14 +10,15 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
year = {2019}
}
```
## Usage

## Results

### ScanNet
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | [email protected] |[email protected]| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [PointNet++](../) | 3x |3.9717|||
| [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x |4.1||62.90|39.91||

### SUNRGBD
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | [email protected] |[email protected]| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [PointNet++](../) | 3x |7.878|||
| [PointNet++](./) | 3x |8.1||59.07|35.77||

0 comments on commit b4cc412

Please sign in to comment.