forked from neetcode-gh/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
|
||
/** | ||
* Return an array of arrays of size *returnSize. | ||
* The sizes of the arrays are returned as *returnColumnSizes array. | ||
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free(). | ||
*/ | ||
|
||
|
||
// An array to traverse all 4 diagonal directions on the chessboard. | ||
int diagonals[][2] = {{1, -1}, {1, 1}, {-1, 1}, {-1, -1}}; | ||
|
||
// A result-stack to store all possible n-queen solutions at a time on a stack during backtracking. | ||
struct result_stack { | ||
char** chessboard; | ||
struct result_stack* next; | ||
}; | ||
|
||
// A Node() function to create a new stack node. | ||
struct result_stack* Node() { | ||
struct result_stack* node = (struct result_stack*)malloc(sizeof(struct result_stack)); | ||
node -> next = NULL; | ||
node -> chessboard = NULL; | ||
return node; | ||
} | ||
|
||
// toggle_queen() function to place and remove any queen on the chessboard by passing in the toggle parameter as 1 or -1. | ||
// toggle == 1 to place a queen at (row, col) on the chessboard. Similarly toggle == -1 to remove a queen from the board. | ||
void toggle_queen(char** chessboard, int n, int row, int col, char toggle) { | ||
|
||
for (int i = 0; i < n; i++) chessboard[row][i] += toggle; | ||
for (int j = 0; j < n; j++) chessboard[j][col] += toggle; | ||
|
||
for (int x; x < 4; x++) { | ||
int i = row + diagonals[x][0]; | ||
int j = col + diagonals[x][1]; | ||
while (i >= 0 && i < n && j >= 0 && j < n) { | ||
chessboard[i][j] += toggle; | ||
i += diagonals[x][0]; | ||
j += diagonals[x][1]; | ||
} | ||
} | ||
chessboard[row][col] -= 3 * toggle; | ||
} | ||
|
||
// copy_board() function to copy each possible solution from the chessboard during backtracking. | ||
char** copy_board(char** chessboard, int n) { | ||
|
||
char** copy = (char**)malloc(n * sizeof(char*)); | ||
for(int i = 0; i < n; i++) { | ||
copy[i] = (char*)malloc((n + 1) * sizeof(char)); | ||
for(int j = 0; j < n; j++) { | ||
chessboard[i][j] == -1 ? (copy[i][j] = 'Q') : (copy[i][j] = '.'); | ||
} | ||
copy[i][n] = '\0'; | ||
} | ||
return copy; | ||
} | ||
|
||
// Recursive backtracking method to go through all possible queen placements on the chessboard. | ||
int backtrack(struct result_stack* stack, char** chessboard, int n, int row) { | ||
|
||
if (row == n) { | ||
// Push the solution to the stack. | ||
struct result_stack* node = Node(); // create a new stack node for a solution. | ||
node -> chessboard = copy_board(chessboard, n); | ||
node -> next = stack -> next; | ||
stack -> next = node; | ||
return 1; | ||
} | ||
|
||
int result_size = 0; | ||
for (int col = 0; col < n; col++) { | ||
if (chessboard[row][col] == 0) { | ||
// Place the queen with toggle = 1. | ||
toggle_queen(chessboard, n, row, col, 1); | ||
result_size += backtrack(stack, chessboard, n, row + 1); | ||
// Backtrack by removing the queen with toggle = -1. | ||
toggle_queen(chessboard, n, row, col, -1); | ||
} | ||
} | ||
return result_size; | ||
} | ||
|
||
|
||
char *** solveNQueens(int n, int* returnSize, int** returnColumnSizes){ | ||
|
||
// Create a N x N chessboard for checking all possible queen placement scenarios. | ||
char** chessboard = (char**)malloc(n * sizeof(char*)); | ||
for(int i = 0; i < n; i++) { | ||
chessboard[i] = (char*)malloc(n * sizeof(char)); | ||
for(int j = 0; j < n; j++) { | ||
chessboard[i][j] = 0; | ||
} | ||
} | ||
|
||
// Create an empty stack to collect all possible n-queen solutions during backtracking. | ||
struct result_stack* stack = Node(); | ||
|
||
// The Backtrack() method will find all possible solutions and stores them on the stack. | ||
// Then returns the total size of the result, which is the total number of possible n-queen solutions. | ||
*returnSize = backtrack(stack, chessboard, n, 0); | ||
|
||
// prepare the result array using the *returnSize obtained from backtracking. | ||
char*** result = (char***)malloc(*returnSize * sizeof(char**)); | ||
*returnColumnSizes = (int*)malloc(*returnSize * sizeof(int)); | ||
|
||
// Pop every n-queen solution from the stack and assign them to the result array. | ||
for (int i = 0; i < *returnSize; i++) { | ||
returnColumnSizes[0][i] = n; | ||
result[i] = stack -> next -> chessboard; | ||
struct result_stack* deletenode = stack -> next; | ||
stack -> next = stack -> next -> next; | ||
// free up each stack node after every solution. | ||
free(deletenode); | ||
} | ||
//free up the stack. | ||
free(stack); | ||
|
||
// free up the chessboard. | ||
for (int row = 0; row < n; row++) { | ||
free(chessboard[row]); | ||
} | ||
free(chessboard); | ||
|
||
return result; | ||
} |