Skip to content

Commit

Permalink
Add StableLM3B model (vllm-project#2372)
Browse files Browse the repository at this point in the history
  • Loading branch information
ita9naiwa authored Jan 17, 2024
1 parent 8cd5a99 commit e1957c6
Show file tree
Hide file tree
Showing 5 changed files with 310 additions and 13 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)

Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
Expand Down
3 changes: 3 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,9 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`QWenLMHeadModel`
- Qwen
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
* - :code:`StableLMEpochForCausalLM`
- StableLM
- :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc.
* - :code:`YiForCausalLM`
- Yi
- :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
Expand Down
17 changes: 5 additions & 12 deletions tests/models/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,18 +5,11 @@
import pytest

MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-hf",
"mistralai/Mistral-7B-v0.1",
"Deci/DeciLM-7b",
"tiiuae/falcon-7b",
"gpt2",
"bigcode/tiny_starcoder_py",
"EleutherAI/gpt-j-6b",
"EleutherAI/pythia-70m",
"bigscience/bloom-560m",
"mosaicml/mpt-7b",
"microsoft/phi-2",
"facebook/opt-125m", "meta-llama/Llama-2-7b-hf",
"mistralai/Mistral-7B-v0.1", "Deci/DeciLM-7b", "tiiuae/falcon-7b", "gpt2",
"bigcode/tiny_starcoder_py", "EleutherAI/gpt-j-6b",
"EleutherAI/pythia-70m", "bigscience/bloom-560m", "mosaicml/mpt-7b",
"microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"
]


Expand Down
3 changes: 2 additions & 1 deletion vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,8 @@
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
"YiForCausalLM": ("yi", "YiForCausalLM"),
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
"YiForCausalLM": ("yi", "YiForCausalLM")
}

# Models not supported by ROCm.
Expand Down
299 changes: 299 additions & 0 deletions vllm/model_executor/models/stablelm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,299 @@
# coding=utf-8
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This code is based off the following work:
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
"""Inference-only StabeLM (https://github.com/Stability-AI/StableLM) model compatible with HuggingFace weights."""
from typing import List, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class StablelmMLP(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
config.hidden_size, [config.intermediate_size] * 2,
bias=False,
linear_method=linear_method)
self.down_proj = RowParallelLinear(config.intermediate_size,
config.hidden_size,
bias=False)
self.act_fn = SiluAndMul()

def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x


class StablelmAttention(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
self.num_heads = self.total_num_heads // tp_size

self.total_num_key_value_heads = config.num_key_value_heads
if self.total_num_key_value_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_key_value_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_key_value_heads == 0
self.num_key_value_heads = max(
1, self.total_num_key_value_heads // tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
self.scaling = self.head_dim**-0.5
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_key_value_heads * self.head_dim

if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads}).")

self.qkv_proj = QKVParallelLinear(self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_key_value_heads,
bias=False,
linear_method=linear_method)
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
self.hidden_size,
bias=False,
linear_method=linear_method)
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_ndims,
max_position=self.config.max_position_embeddings,
base=self.config.rope_theta,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_key_value_heads)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output


class StablelmDecoderLayer(nn.Module):

def __init__(
self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.self_attn = StablelmAttention(config)
self.mlp = StablelmMLP(config, linear_method)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.norm_eps)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
hidden_states = residual + hidden_states

# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states

return hidden_states, residual


class StableLMEpochModel(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None) -> None:
super().__init__()
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
StablelmDecoderLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
)
hidden_states = self.norm(hidden_states)
return hidden_states


class StablelmForCausalLM(nn.Module):

def __init__(
self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = StableLMEpochModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states

def sample(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens

def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

0 comments on commit e1957c6

Please sign in to comment.