Skip to content

Patriciasr92/keras-vggface

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

keras-vggface

Oxford VGGFace Implementation using Keras Functional Framework 1.1

  • This model is converted from original caffe network. (580 MB)
  • It supports both Tensorflow and Theano backeds.
  • You can also load only feature extraction layers with VGGFace(include_top=False) initiation (59MB).
  • When you use it for the first time , weights are downloaded and stored in ~/.keras folder.

Library Versions

  • Keras v1.1
  • Tensorflow v10
  • Theano v0.8.2

Example Usage

  • Tensorflow backend with 'tf' dimension ordering
from scipy import misc
import copy
import numpy as np
from vggface import VGGFace

model = VGGFace()

im = misc.imread('../image/ak.jpg')
im = misc.imresize(im, (224, 224)).astype(np.float32)
aux = copy.copy(im)
im[:, :, 0] = aux[:, :, 2]
im[:, :, 2] = aux[:, :, 0]
# Remove image mean
im[:, :, 0] -= 93.5940
im[:, :, 1] -= 104.7624
im[:, :, 2] -= 129.1863
im = np.expand_dims(im, axis=0)

res = model.predict(im)
print np.argmax(res[0])
  • Theano backend with 'th' dimension ordering
from scipy import misc
import copy
import numpy as np
from vggface import VGGFace

model = VGGFace()

im = misc.imread('../image/ak.jpg')
im = misc.imresize(im, (224, 224)).astype(np.float32)
aux = copy.copy(im)
im[:, :, 0] = aux[:, :, 2]
im[:, :, 2] = aux[:, :, 0]
# Remove image mean
im[:, :, 0] -= 93.5940
im[:, :, 1] -= 104.7624
im[:, :, 2] -= 129.1863
im = np.transpose(im, (2, 0, 1))
im = np.expand_dims(im, axis=0)

res = model.predict(im)
print np.argmax(res[0])

References

###Licence

Original models can be used for non-commercial research purposes under Creative Commons Attribution License.

The code that provided in this project is under MIT License.

About

VGGFace implementation with Keras Framework

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%